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Origins and History

• John Wallis introduced hypergeometric series (book:Arithmetica Infinitorum):
1 + a+ a(a+ b) + a(a+ b)(a+ 2b) + . . . + a(a+ b)(a+ 2b). . . (a+ (n− 1)b) in 1655

• now for b = 1 this series turns to
1 + a+ a(a+1)+ a(a+1)(a+2)+ · · ·+ a(a+1)..(a+ n− 1) + .. this was represented
as

∑
n≥0(a)n where (a)n = a(a+ 1) . . . (a+ n− 1), (a0 = 1)

by Leo August Pochhammer which was later called shifted factorial

• Leonhard Euler introduced the power series:

2F1 (a, b, c, z) = 1 + ab
1!cz +

a(a+1)b(b+1)
2!c(c+1) z2 + ..+ a(a+1)...(a+n−1)b(b+1)...(b+n−1)

n!c(c+1)...(c+n−1) zn + ..

• In 1812 Carl Friedrich Gauss reintroduced this in his famous paper as a solution to
2nd order differential equation:

x(x− 1)y′′ + [c− (a+ b+ 1)x]y′ − aby = 0 (1)
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Origins and History

• From this infinite series many other series can generalized like: other series solutions
of ODEs, harmonic series etc
(by Riemann’s theorem : if a(x)y′′ + b(x)y′ + c(x)y = 0 has only 3 regular singularities then it is equivalent to equation (1))

• a generalized hypergeometric function has a series representation
∑∞

n=0 cn with
cn+1/cn a rational function of n eg : cn = (a)nx

n/(b)n

• Basic hypergeometric series are series
∑

n≥0 cn with cn+1/cn a rational function of qn

for a fixed parameter q, Euler proved many identities using these type of series

• influenced by Euler’s work on continued functions Heinrich Eduard Heine introduced

basic Hypergeometric series : 2ϕ1(q
a, qb; qc, q, z) =

∞∑
n=0

(qa; q)n (q
b; q)n

(q; q)n (qc; q)n
zn

where (a; q)n = (1 − a)(1 − aq) . . . (1 − aqn−1)

on observing that limq→1
(qa;q)n
(1−q)n = (a)n so as q → 1 2ϕ1 →2 F1

q-series, Ramanujan’s theta functions and Overpartitions Yashas N. 3 / 19



Hypergeometic series

• we define rFs(a1, a2, . . . , ar; b1, b2, . . . , bs) = 1 +

∞∑
n=1

(a1)n(a2)n . . . (ar)n
n!(b1)n(b2)n . . . (bs)n

zn

where generally z is a complex number and bi’s are defined such that the denominator
is not zero

• This series terminates if one of ai = −n i.e. a negative integer

• This series converges:
• if r ≤ s for all z
• if r = s+ 1 then for all |z| < 1 and
• if |z| = 1 and r = s+ 1 then when Re[b1 + b2 + · · ·+ bs − (a1 + a2 + · · ·+ ar)] > 0
• diverges otherwise

• Eg: 2F1(a, b; c, z) converges: for all |z| < 1 and if Re(c− a− b) > 0 for |z| = 1
diverges for all |z| > 1
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Hypergeometic series Identities

for all |z| ≤ 1 and c ̸= −n, n ∈ N we have

Binomial Theorem

2F1(a, c; c; z) =1 F0(a; z) =
∑∞

n=0
(a)n
n! z

n = 1
(1−z)a

Euler’s Transformation

2F1(a, b; c; z) = (1− z)c−a−b
2F1(c− a, c− b; c, z)

Gauss’s Summation

2F1(a, b; c; 1) =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b)
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Basic Hypergeometric series

• Going with the same spirit as hypergeometric series we define

2ϕ1(a, b; c, q, z) =

∞∑
n=0

(a; q)n (b; q)n
(q; q)n (c; q)n

zn

In general

rϕs(a1, a2, . . . , ar; b1, b2 . . . , br; q, z) =

∞∑
n=0

(a1, a2, . . . , ar; q)n
(q; q)n(b1, b2, . . . , bs; q)n

[
(−1)n q

(
n(n−1)

2

)]
zn

where bi’s are such that denominator is not zero and

[
(−1)n q

(
n(n−1)

2

)]
is used to

simplify calculations

• This series terminates if one of ai = q−n for some positive integer n

• This series converges if : r ≤ s and |q| < 1 for all z or if r = s+ 1 and|z| < 1 or if
|q| > 1 and |z| < | b1b2...bsqa1a2...ar

| diverges otherwise
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q-analogues of Hypergeometic series Identities

Binomial Theorem

1ϕ0(a; q, z) =
∑∞

n=0
(a;q)n
(q;q)n

zn = (az;q)∞
(z;q)∞

Euler’s Transformation

2ϕ1(a, b; c; q, z) =
(abz/c;q)∞

(z;q)∞ 2ϕ1(c/a, c/b; c, q, abz/c)

Gauss’s Summation

2ϕ1(a, b, c; q, c/ab) =
(c/a,c/b;q)∞
(c,c/ab;q)∞
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q-series Identities

Heine’s Transformation

2ϕ1(a, b; c; q, z) =
(b,az;q)∞
(c,z;q)∞ 2ϕ1(c/b, z; az; q, b)

Bailey’s Transformation

2ϕ1(a, b; ab/q, q,−q/b) = (aq,aq/b2;q2)∞(−q;q)∞
(aq/b,−q/b;q)∞

Jacobi’s triple product

(q2; q2)∞(−zq; q2)∞(−q/z; q2)∞ =

∞∑
n=−∞

znqn
2
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Partitions

• Partition : for a non negative integer n a partition of n is a non increasing sequence of
positive integers whose sum is n for eg: (3 2 1) is a partition of 6 as 3+2+1=6

• Number of possible partition of n is denoted by p(n) (p(0)=0 by convention)

eg: p(5)= 7 as (5),(4 1),(3 2),(3 1 1),(2 2 1),(2 1 1 1),(1 1 1 1 1) are partitions of 5

• many mathematicians studied partitions but not until Euler who found its generating
functions , accelerating the development of the field

• Partition theory finds its application in probability, statistics, combinatorics and
particle physics

• Prominent Mathematicians like Cayley, Gauss, Hardy, Jacobi, Lagrange, Legendre,
Littlewood, Rademacher, Ramanujan, Schur, and Sylvester have contributed to the
development of the theory
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q-series and Partition functions

for General partition function p(n):∑∞
n=0 p(n)q

n = 1
(q;q)∞

for distinct partition function pd(n):∑∞
n=0 pd(n)q

n = (−q; q)∞

if p(N,M, n) denote the number of partitions on n into at most M parts each ≤ N
then:

G(N,M ; q) =
∑

n≥0 p(N,M,n)qn =
(q;q)N+M

(q;q)N (q;q)M
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Ramanujan’s theta functions

• f(a, b) =

∞∑
n=−∞

an(n+1)/2 bn(n−1)/2

• special cases :

φ(q) = f(q, q) =

∞∑
n=−∞

qn
2

ψ(q) = f(q, q3) =

∞∑
n=0

qn(n+1)/2

f(−q) = f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2

χ(q) = (−q; q2)∞
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Theta function identities

• f(a, b) = f(b, a), f(1, a) = 2φ(a), f(−1, a) = 0

• if rk(n)andtk(n) are number of ways to represent n as sum of k squares and as sum of
k triangular numbers respectively then:

φk(q) =
∑∞

n=0 rk(n)q
n

ψk(q) =
∑∞

n=0 tk(n)q
n

• Jacobi’s triple product:

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞

•

φ(q) = (−q; q2)2∞(q2; q2)∞, ψ(q) =
(q2; q2)∞
(q; q2)∞

, f(−q) = (q; q)∞,

χ(−q2) = χ(q)χ(−q)
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Theorem
for any positive integer n

p(5n+ 4) ≡ 0 (mod 5)

Proof.

• for any sequence of integers an, L(q) =
∑

n≥0 anq
n2

(q;q)2∞
the coefficient of q5n+3 in L(q) is

divisible by 5:

• take L(q) = (q; q)3∞

∑
n≥0 anq

n2

(q;q)5∞
≡ (q; q)3∞

∑
n≥0 anq

n2

(q5;q5)∞
(mod 5)

• now as (q5, q5)∞ term gives rise only to 5 divisible terms it is enough to examine for
q5n+3 terms in

(q; q)3∞
∑

n≥0 anq
n2

=

∞∑
j=0

(−1)j(2j + 1)qj(j+1)/2
∑
n≥0

anq
n2

by Jacobi’s identity

• so for our condition the coefficient terms of q power j(j + 1)/2 +m2 = 5n+ 3,
j(j + 1)/2 +m2 = 5n+ 3 ⇐⇒ ((2j + 1)2 − 1)/8 +m2 − 3 = 5n ≡ 0 (mod 5)
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Proof.

⇐⇒ ((2j + 1)2 − 1 + 8m2 − 24)/8 ≡ 0 (mod 5) ⇐⇒ (2j + 1)2 + 8m2 − 25 ≡ 0
(mod 5) ⇐⇒ (2j + 1)2 + 3m2 ≡ 0 (mod 5)

• since (2j + 1)2 ≡ 0, 1, 4 (mod 5) and 3m2 ≡ 0, 2, 3 (mod 5) only
=⇒ (2j + 1)2 + 3m2 ≡ 0 (mod 5) ⇐⇒ 2j + 1 ≡ 0 (mod 5)

• now coefficients q5n+3 are (−1)j(2j + 1)an is divisible by 5

• now 1
(q2;q2)∞

=
∑

n≥0 p(n)q
2n = 1

(q;q)∞(−q;q)∞
= (q;q)∞

(q;q)2∞(−q;q)∞
= 1

(q;q)2∞
φ(−q) =

1
(q;q)2∞

(1 + 2

∞∑
m=1

(−1)mqm
2
)

• thus for 2k = 5n+ 3 terms the coefficients are ≡ 0 (mod 5) , now
2k = 5n+ 3 ⇐⇒ k ≡ 5n+ 4
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Overpartitions

• Many proofs of theorems like q-binomial theorem, Heine’s transformation, Lebesgue’s
identity, Ramanujan’s 1ψ1 summation and q-Gauss summations involve a naturally
recurring quantity that is more general than partitions: Overpatitions which was
discussed MacMohan’s combinatorics analysis.

• So the study of these overpartitions make sense, theory of basic hypergeometric series
contains a wealth of information about overpartitions and many theorems and
techniques of ordinary partitions have analogues for overpartitions

• Making use of already developed partition theory a generating q-series function for
overpartition is developed with some restrictions

q-series, Ramanujan’s theta functions and Overpartitions Yashas N. 15 / 19



Overpartition functions

• An overpartition of n is a non-increasing sequence of natural numbers whose sum is n
in which the first occurrence (equivalently, the final occurrence) of a number may be
overlined

• for example overpartitions of 3 are 3, 3̄, 2 + 1, 2̄ + 1, 2 + 1̄, 2̄ + 1̄, 1 + 1 + 1, 1̄ + 1 + 1

• if p̄(n) indicate the number of overpartition of n then:

∞∑
n=0

p̄(n)qn =
(−q, q)
(q, q)

=
1

φ(−q)
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Theorem
if p̄o(n) represents the number of overparrtiions of n in which only odd parts occur then:

p̄o(n) =

{
2 mod 4 if n is square of twice a square number
0 mod 4 otherwise

Proof.
• if P̄ (n) =

∑
n≥0 p̄(n)q

n and P̄o(n) =
∑

n≥0 p̄o(n)q
n then

P̄ (n) = φ(q)P̄ (q2)2

P̄o(n) = φ(q)P̄ (q2)

• using this recurrence formula we get P̄o(n) = φ(q)φ(q2)φ(q4)2φ(q8)4 . . .

• now φ(q)2
k

(mod 4) = (1 + 2
∑

n≥1 q
n2

)2
k

(mod 4) = 1 (mod 4) for k ≥ 1 so

=⇒ P̄o(n) (mod 4) = ϕ(q)ϕ(q2) (mod 4) = (1 + 2
∑

n≥1 q
n2

)(1 + 2
∑

n≥1 q
2n2

)(mod 4)

= 1 + 2
∑

n≥1 q
n2

+ 2
∑

n≥1 q
2n2

(mod 4)
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Future plans

• Studying more of congruence relations in overpartitions

• Studying l-regular and singular overpartitions and theirs generating functions and
relations

• Deriving more of congruence relations after the study

• Studying colored partitions and their relations
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