Special examples

Yashas.N

1 Sequences and Series

1. Riemann-Zeta function $\zeta : \mathbb{C} \to \mathbb{C} + \infty$ defined by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

- (a) if $1 < Re(s) < \infty$ then the series converges uniformly and absolutely
- (b) clearly ζ is analytic for Re(s) > 1
- (c) Euler's Product formula:

$$\zeta(z) = \prod \left(1-\frac{1}{p^s}\right)^{-1}$$

where the product ranges over all primes p which implies $\zeta(s) \neq 0$ if Re(s) > 1. More generally we have

$$\zeta(s)(1-2^{-s})(1-3^{-s})\dots(1-p_N^{-s}) = \sum m^s = 1+p_{N+1}^{-s}\dots$$

where the R.H.S ranges for all +*ve* integers that contain none of prime factors 2, 3, ..., p_N (d) now if $1 < s < \infty$ (i.e. *s* is real > 1) then

$$\zeta(s) = s \int_1^\infty \frac{[x]}{x^{s+1}} dx$$

where [x] is greatest integer $\leq x$

(e) more generally if Re(s) > 1 then

$$\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty \frac{x^s - 1}{e^x - 1} dx$$

where $\Gamma(z)$ is defined by product representation for complex numbers.

2.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

- (a) is convergent to $\ln(2)$
- (b) does not converge absolutely.

2 Functions in \mathbb{R}

1. Dirichlet Function $\delta(x)$

$$\delta(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

- (a) δ is not Riemann Integrable in any interval [a, b]
- (b) δ is Lebesgue Intergrable in \mathbb{R} and has 0 integral value with usual lebesgue measure as the set for which δ is not zero is countable.
- 2. $f : \mathbb{R} \to \mathbb{R}$ such that for every rational r = m/n where n > 0 and $m, n \in \mathbb{Z}$ with out any common divisors then f(r) = f(m/n) = 1/n, x = 0 take n = 1 i.e. f(0) = 1 and f(x) = 0 if x is irrational i.e.

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ \frac{1}{n} & \text{if } x = \frac{m}{n} \end{cases}$$

- (a) f(x) is continuous at every irrational number
- (b) f(x) is discontinuous at rational with simple discontinuities

3. $\sin(x)$

- (a) can be defined without geometric interpretation as $\sin x = (e^{ix} - e^{-ix})/2$ for real x
- (b) sin is continuous one-one function in domain $[-\pi, \pi]$ onto [-1, 1] hence inverse sin⁻¹ is defined in this area.
- (c) we see that $\frac{2}{\pi}x \le \sin x \le x$ holds $\forall x \in [0, \pi/2]$

- 4. Distance to a closed set function
 - (a) if A is any closed set in \mathbb{R} define $D_A(x) = \inf(d(x, a))$ for $a \in A$ and a metric d on \mathbb{R} (usually the Euclidean metric).
 - (b) for $x, y \in \mathbb{R}$ say inf(d(a, x)) for $a \in A$ occurs at $p \in A$ and inf(d(a, y)) for $a \in A$ occurs at $q \in A$ i.e. $|D_A(x) - D_A(y)| = |d(p, x) - d(q, y)|$ (this is possible since A is closed in \mathbb{R}) now as $d(q, y) \le d(p, y)$ we have $|D_A(x) - D_A(y)| \le |d(p, x) - d(p, y)| \le |d(x, y)|$ as $d(p, x) \le d(p, y) + d(x, y)$ so we get if $d(x, y) < \epsilon$ then $|D_A(x) - D_A(y)| < \epsilon$ thus D_A is uniformly continuous.
 - (c) Thus there exist a uniformly continuous function of \mathbb{R} that has zeroes exactly equal to a given closed set in \mathbb{R} (namely D_A for a given closed set $A \subset \mathbb{R}$).