Yashas.N

1 Trivial properties	• if $l \neq o$ then $\sum u_n$ follows behaviour of $\sum u_n$
• The below properties are for in general com- plete spaces. whose defining property is the following point	$\sum v_n.$ • if $l = o$ then $\sum u_n$ converges if $\sum v_n$ converges. (as $o < u_m \le v_m$ holds for sufficiently large m ,
• Cauchy sequence \iff Convergent sequence (in general metric spaces \mathbb{R}^n for $n \in \mathbb{N}$ are complete in particular \mathbb{R} and \mathbb{C} are complete). • $a_n \rightarrow o$ as $n \rightarrow \infty$ is a necessary condition for a series $\sum_{n=1}^{\infty} a_n$ to converge. (not sufficient eg: $\sum 1/n$ harmonic series)	and also if $\sum u_n$ diverges then $\sum v_n$ diverges). • if $l = \infty \sum u_n$ diverges if $\sum v_n$ diverges. (as $o < v_m \le u_m$ holds like preceding point). • Cauchy's Condensation test : if $f(n)$ is a monotone decreasing sequence of positive numbers (i.e. $f(n) > o, f(k) \ge f(k+1) \forall k \in \mathbb{N}$) then for $m \in \mathbb{N} \sum f(n)$ and $\sum m^n f(m^n)$ have same behaviour. (Mostly used in the form $\sum 2^n f(2^n)$.) • Raabe's Test : for series $\sum u_n$ of positive real
Below tests apply for series whose general	numbers if $D_n = n\left(1 - \frac{u_{n+1}}{u_n}\right)$ and
terms are positive only (i.e. ≥ 0) (Note : it can also be used to check for absolute convergence as taking absolute value of each term results in terms ≥ 0) • for rest of the notes let behaviour denote convergence and divergence simultaneously i.e. say $\{a_n\}$ follows behaviour of $\{b_n\}$ means that $\{a_n\}$ converges if $\{b_n\}$ converges and $\{a_n\}$ diverges if $\{b_n\}$ diverges. • Comparison test : for series $\sum u_n, \sum v_n$ if $u_n \le k \times v_n$ for $k > 0$ then u_n converges if v_n converges and v_n diverges if u_n diverges. • Limit form of comparison test for series $\sum u_n, \sum v_n$ if $l = \lim_{n \to \infty} \frac{u_n}{v_n}$.	$D = \limsup D_n, \ d = \liminf D_n$ then : if $D < 1$ series converges if $d > 1$ series diverges no conclusions if $d \le 1 \le D$ • Integral test : if $f(x) \ge 0$ in $[1, \infty)$ and is monotonically decreasing then $\sum_{n=1}^{\infty} f(n)$ and $\int_1^{\infty} f(x) dx$ follow same behaviour. Intergral inequality : if $\sum_{n=1}^{\infty} f(n)$ is as above and converges to s then the for partial sums $s_n = \sum_{k=1}^n f(k)$ we have $\int_{n+1}^{\infty} f(t) dt \le s - s_n \le \int_n^{\infty} f(t) dt$
1	

3 General tests

• **Ratio test** for series $\sum z_n$ with non zero terms $\in \mathbb{C}$ if $\mathbf{r}_n = \left| \frac{z_{n+\tau}}{z_n} \right|$

 $r = \lim \inf r_n$, $R = \lim \sup r_n$.

then :

- if **R** < **1** series converges absolutely
- if **r** > **1** series diverges
- no conclusion of behaviour if $r \le 1 \ge R$
- **Root test** : for series $\sum z_n$ if

 $L = \lim \sup |z_n|^{1/n}$

then :

- if L < 1 series converges absolutely.
- if L > 1 series diverges.
- if $\mathbf{L} = \mathbf{1}$ no conclusion.

4 Miscellaneous series properties

• if $\sum (x_n + y_n)$ converges then both $\sum x_n$ and $\sum y_n$ converge or diverge (one cannot diverge and another converge).

• if $\sum a_n$ and $\sum b_n$ converge absolutely then $\sum c_n = \sum a_n b_n$ converges absolutely.

• restatement of above point : $a_n, b_n > o$ and $\sum a_n, \sum b_n$ converge then $\sum a_n b_n$ converges • if $a_n \ge o$ and $\sum a_n$ converges then $\sum a_n^k$ for $k \ge 1$ converges (as $a_n \to o$, for sufficiently large n we get $a_n < 1 \implies (a_n)^k \le a_n$ and comparison test convergence follows).

• if $o \leq a_n \rightarrow a$ then

$$s_n = \frac{a_1 + a_2 + \dots + a_n}{n} \to a$$

• for converse of above point if s_n converges and if for $a_n = s_n - s_{n-1}$, $\lim na_n = o$ then a_n converges

• similar to above point if $|na_n| \le M < \infty \ \forall n$ and $\lim s_n = s$ then $a_n \to s$

• if $\mathbf{o} < \mathbf{a}_n \to \mathbf{a}$ then

$$(\mathfrak{a}_1.\mathfrak{a}_2\ldots\mathfrak{a}_n)^{1/n} \to \mathfrak{a}$$

• if $\sum a_n$ converges then $\sum \frac{\sqrt{a_n}}{n}$ converges • if $a_n \ge o$ and $\sum a_n$ converges then $\sum \sqrt{a_n a_{n+1}}$ converges. • Series $\sum_{n=0}^{\infty} \left(\frac{az+b}{cz+d}\right)^n$ for |a| = |c| > o converges whenever

$$\frac{|\mathbf{b}|^2-|\mathbf{d}|^2}{2} < \operatorname{Re}(z(c\bar{\mathbf{d}}-a\bar{\mathbf{b}})).$$

or in general if $|\mathfrak{a}| \neq |\mathfrak{c}|$, then converges whenever

$$\frac{(|a|^2-|c|^2)|z|^2+|b|^2-|d|^2}{2} < \operatorname{Re}(z(c\bar{d}-a\bar{b})).$$

• Dirichlet's Test :If $\left\{\sum_{k=1}^{n} a_k\right\}$ is a bounded sequence and $\{b_n\}$ is an null sequence $(b_n \rightarrow o \text{ as } n \rightarrow \infty)$ then $\sum_{n=1}^{\infty} a_n b_n$ converges.

• Abel's Test : if $\{x_n\}$ is convergent monotone sequence and series $\sum y_n$ is convergent then $\sum x_n y_n$ is convergent.

• if
$$a_n > 0$$
 and $\sum_{n=1}^{\infty} a_n$ diverges, $s_n = \sum_{k=1}^n a_k$

 ${\rm then}_\infty$

•
$$\sum_{n=1}^{\infty} \frac{a_n}{s_n}$$
 diverges
• $\sum_{n=1}^{\infty} \frac{a_n}{s_n^2}$ converges

• For any sequence $\{a_n\}$

$$\begin{split} &\lim \inf \left| \frac{a_{n+1}}{a_n} \right| \le \liminf |a_n|^{1/n} \\ &\le \limsup |a_n|^{1/n} \le \limsup \left| \frac{a_{n+1}}{a_n} \right| \end{split}$$

• if $\sum a_n$ converges and $\{b_n\}$ is monotonic and bounded then $\sum a_n b_n$ converges

• Leibniz Theorem : if $\{c_n\}$ is such that $c_n > 0$ and is monotonic decreasing to 0 (i.e. $c_{n+1} < c_n$, $c_n \to 0$) then $\sum_{n=1}^{\infty} (-1)^{n+1} c_n$ converges. • a series $\sum a_n$ is said to be absolutely convergent if $\sum |a_n|$ converges

• if a series is absolutely convergent the it is convergent.

• if
$$\sum_{n=0}^{\infty} a_n$$
 converges absolutely, $\sum_{n=0}^{\infty} a_n = A$,
 $\sum_{n=0}^{\infty} b_n = B$ and $c_n = \sum_{k=0}^{n} a_k b_{n-k}$ (Cauchy product) then $\sum_{n=0}^{\infty} c_n = AB$

• Cauchy product of two absolutely convergent series is absolutely convergent.

• if $\{k_n\}$ is a sequence in \mathbb{N} such that every integer appears once and if $a'_n = a_{k_n}$ then a rearrangement of $\sum a_n$ is of type $\sum a'_n$

• Riemann Rearrangement Theorem : if series of real numbers $\sum a_n$ converges but not absolutely then for any $-\infty \ge \alpha \ge \beta \ge \infty$ series $\sum a_n$ can be rearranged to $\sum a'_n$ with partial sum s'_n such that

 $\liminf s'_n = \alpha$ and $\limsup s'_n = \beta$

• for a given double sequence
$$\{a_{ij}\}$$
 for $i = 1, 2, ..., j = 1, 2, ...$ if $\sum_{j=1}^{\infty} |a_{ij}| = b_i$ and $\sum b_i$

converges then

$$\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}a_{ij}=\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}a_{ij}$$

, same holds true i.e. summation can be changed if each of $a_{ij} \ge o$ also.

•

$$\lim_{n\to\infty}\sum_{r=\alpha}^{\beta}\frac{1}{n}f(\frac{r}{n})=\int_{\alpha}^{b}f(x)dx$$

where replace :

$$r/n \to x$$

$$1/n \to dx$$

$$a = \lim_{n \to \infty} \alpha/n$$

$$b = \lim_{n \to \infty} \beta/n$$

(to derive use simple notion of Riemann Integration: if **f** is integrable in [a, b] then for every $\epsilon > 0$ $\left|\sum_{i=1}^{n} f(t_i)\Delta(x_i) - \int_{\alpha}^{b} f(x)d(x)\right| < \epsilon \text{ holds for some partition } p([x_i, x_{i+1}]_1^{n-1}) \text{ of } [\alpha, b] \text{ and for any } t_i \in [x_i, x_{i+1}])$

5 Some limits and theorems

• L'Hospital Rule : if f, g are real differentiable functions in (a, b) (for $-\infty \le a < b \le \infty$) such that $g'(x) \ne o$ in (a, b) then as $x \rightarrow a$ $f(x) \rightarrow o, g(x) \rightarrow o$ or if $g(x) \rightarrow \pm \infty$ and if $\frac{f'(x)}{g'(x)} \rightarrow A$ then $\frac{f(x)}{g(x)} \rightarrow A$ (analogous result holds for $x \rightarrow b$) (is also true if f, g are complex valued and $f(x) \rightarrow o, g(x) \rightarrow o$)

• for $f, g: D \subset \mathbb{R} \to \mathbb{R}$, if $\lim_{x \to c} f(x) = o$ and g(x) is bounded in some deleted neighbourhood of c then $\lim_{x \to c} f(x)g(x) = o$

• if $\lim_{x \to c} f(x) = l$ and g is continuous at lor in some set whose limit point is l then $\lim_{x \to c} g(f(x)) = \lim_{x \to l} g(x)$

•
$$\lim_{n \to \infty} \sum_{m=1}^{n} \frac{1}{m} - \ln n = \gamma \text{ a fixed number}$$

•
$$\lim_{n \to \infty} z^{n} = 0 \text{ if } |z| < 1$$

• if a > 1 and p(n) is a fixed polynomial in n then $\lim_{n \to \infty} \frac{a^n}{p(n)} = \pm \infty$ (depends on p(n), precisely on coefficient of largest degree term).

• $\lim_{n \to \infty} n^{1/n} = 1$ in particular if $|z| \neq 0$ then $\lim_{n \to \infty} |z|^{1/n} = 1$ • $\lim_{n \to \infty} (1 + \frac{\alpha}{n})^n = e^{\alpha}$ • for $\alpha \in \mathbb{R}, p > 0$ we have $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$

• if $\alpha, \beta > 0$ and $x \in \mathbb{R}$ then : • $\lim_{x \to \infty} \frac{(\ln(x))^{\alpha}}{x^{\beta}} = 0$

 $\lim_{x\to\infty}\frac{x^{\alpha}}{e^{\beta x}}=0$

• from some preceding points we get

growth of ln(n) < growth of n < growth of p(n)(for non constant p(n).) $< growth of a^n (a > 1) < growth of n!$.

• series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for $p > 1$ and diverges for $p \le 1$ • series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p}$ converges for $p > 1$ and diverges for $p \le 1$ this result can be continued to series like $\sum_{n=2}^{\infty} \frac{1}{n \ln n (\ln \ln n)^p}$, $\sum_{n=2}^{\infty} \frac{1}{n \ln n \ln \ln n (\ln \ln \ln n)^p}$ and so on.	 converges uniformly to f in domain A ⊆ R iff f_n - f _A → o i.e. the uniform norm of f_n - f converges too. one way to find the uniform norm for a function is to differentiate it and find its maximum on domain. Dinni's Theorem : if {f_n} is a monotone sequence of continuous functions on [a, b] (closed and bounded) that converges to f which is continuous on [a, b] then the convergence is uniform.
• for series such as $\sum_{n=0}^{\infty} q^n z^{kn}$ for some $k \ge 0$ fixed then this series is equal to series $\sum_{n\ge 0} a_n z^n$ where	• if $f(x)$ is uniformly continuous on \mathbb{R} and non zero at integer values then $\sum_{n=1}^{\infty} \frac{1}{f(n)}$ is never convergent (use $ f(x) \le A x + B$)
$a_n = \begin{cases} q^{n/k} & \text{if } n = 0, k, 2k, 3k, \dots \\ 0 & \text{otherwise} \end{cases}$ Thus $\mathbf{R} = \lim \sup 1 / a_n ^{1/n} = q^{-1/k}$. for	References [1] Rudin W.: Principles of Mathematical
$\sum_{n=0}^{\infty} q^n z^{kn} \text{ series.}$ 6 Uniform Convergence	Analysis,McGraw-Hill,3,(1976). [2] Ponnusamy S., Silverman H.: Complex Variables and Applica- tions,Birkhauser,(2006).
 define uniform norm for a function f : A ⊆ ℝ → ℝ as f _A = sup(f(a) for a ∈ A) A sequence of bounded functions {f_n} in ℝ 	[3] Robert G. Bartle, Donald R. Sherbert: Intro- duction to Real Analysis, Wiley publishers, 4, (2011).