
Sequence and Series
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1 Trivial properties

• The below properties are for in general com-
plete spaces. whose defining property is the
following point
• Cauchy sequence ⇐⇒ Convergent se-
quence
( in general metric spaces Rn for n ∈ N are
complete in particular R and C are complete).
• an → 0 as n → ∞ is a necessary condition

for a series
∞∑
n=1

an to converge. (not sufficient eg:∑
1/n harmonic series )
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2 Tests for positive termed series

• Below tests apply for series whose general
terms are positive only (i.e. ≥ 0)
(Note : it can also be used to check for absolute con-
vergence as taking absolute value of each term results in
terms ≥ 0 )

• for rest of the notes let behaviour denote
convergence and divergence simultaneously i.e.
say {an} follows behaviour of {bn} means that
{an} converges if {bn} converges and {an} di-
verges if {bn} diverges.
• Comparison test : for series

∑
un,

∑
vn if

un ≤ k× vn for k > 0 then un converges if vn
converges and vn diverges if un diverges.
• Limit form of comparison test for series∑

un,
∑

vn if

l = lim
n→∞ un

vn
.

then:

■ if l ̸= 0 then
∑

un follows behaviour of∑
vn.

■ if l = 0 then
∑

un converges if
∑

vn con-
verges.
(as 0 < um ≤ vm holds for sufficiently large m,
and also if

∑
un diverges then

∑
vn diverges).

■ if l = ∞ ∑
un diverges if

∑
vn diverges.

(as 0 < vm ≤ um holds like preceding point).
• Cauchy’s Condensation test : if f(n) is
a monotone decreasing sequence of positive
numbers (i.e. f(n) > 0, f(k) ≥ f(k + 1) ∀k ∈ N)
then for m ∈ N

∑
f(n) and

∑
mnf(mn)

have same behaviour. (Mostly used in the form∑
2nf(2n).)

• Raabe’s Test : for series
∑

un of positive real
numbers if Dn = n

(
1− un+1

un

)
and

D = lim supDn, d = lim infDn

then :
■ if D < 1 series converges
■ if d > 1 series diverges
■ no conclusions if d ≤ 1 ≤ D

• Integral test : if f(x) ≥ 0 in [1,∞) and

is monotonically decreasing then
∞∑
n=1

f(n) and∫∞
1 f(x)dx follow same behaviour.

■ Intergral inequality : if
∞∑
n=1

f(n) is as above

and converges to s then the for partial sums

sn =

n∑
k=1

f(k) we have

∞∫
n+1

f(t)dt ≤ s− sn ≤
∞∫
n

f(t)dt
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3 General tests

• Ratio test for series
∑

zn with non zero
terms ∈ C if rn =

∣∣∣zn+1
zn

∣∣∣
r = lim inf rn, R = lim sup rn.

then :
■ if R < 1 series converges absolutely
■ if r > 1 series diverges
■ no conclusion of behaviour if r ≤ 1 ≥ R

• Root test : for series
∑

zn if

L = lim sup |zn|
1/n

then :
■ if L < 1 series converges absolutely.
■ if L > 1 series diverges.
■ if L = 1 no conclusion.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Miscellaneous series properties

• if
∑

(xn + yn) converges then both
∑

xn
and

∑
yn converge or diverge (one cannot di-

verge and another converge).
• if

∑
an and

∑
bn converge absolutely then∑

cn =
∑

anbn converges absolutely.
• restatement of above point : an,bn > 0 and∑

an,
∑

bn converge then
∑

anbn converges
• if an ≥ 0 and

∑
an converges then

∑
ak
n

for k ≥ 1 converges (as an → 0, for sufficiently
large n we get an < 1 =⇒ (an)

k ≤ an and
comparison test convergence follows).
• if 0 ≤ an → a then

sn =
a1 +a2 + · · ·+an

n
→ a

• for converse of above point if sn converges
and if for an = sn− sn−1, limnan = 0 then an

converges
• similar to above point if |nan| ≤ M < ∞ ∀n
and lim sn = s then an → s

• if 0 < an → a then

(a1.a2 . . .an)
1/n → a

• if
∑

an converges then
∑ √

an

n converges
• if an > 0 and

∑
an converges then∑√

anan+1 converges.

• Series
∑∞

n=0

(
az+b
cz+d

)n
for |a| = |c| > 0 con-

verges whenever

|b|2 − |d|2

2
< Re(z(cd̄−ab̄)).

or in general if |a| ̸= |c|, then converges when-
ever

(|a|2 − |c|2)|z|2 + |b|2 − |d|2

2
< Re(z(cd̄−ab̄)).

• Dirichlet’s Test :If

{
n∑

k=1

ak

}
is a bounded

sequence and {bn} is an null sequence (bn →

0 as n → ∞) then
∞∑
n=1

anbn converges.

• Abel’s Test : if {xn} is convergent monotone
sequence and series

∑
yn is convergent then∑

xnyn is convergent.

• if an > 0 and
∞∑
n=1

an diverges, sn =

n∑
k=1

ak

then

■

∞∑
n=1

an

sn
diverges

■

∞∑
n=1

an

s2n
converges

• For any sequence {an}

lim inf
∣∣∣∣an+1

an

∣∣∣∣ ≤ lim inf |an|
1/n

≤ lim sup |an|
1/n ≤ lim sup

∣∣∣∣an+1

an

∣∣∣∣
• if

∑
an converges and {bn} is monotonic

and bounded then
∑

anbn converges
• Leibniz Theorem : if {cn} is such that cn > 0
and is monotonic decreasing to 0 ( i.e. cn+1 <

cn, cn → 0 ) then
∞∑
n=1

(−1)n+1cn converges.
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• a series
∑

an is said to be absolutely conver-
gent if

∑
|an| converges

• if a series is absolutely convergent the it is
convergent.

• if
∞∑
n=0

an converges absolutely,
∞∑
n=0

an = A,

∞∑
n=0

bn = B and cn =

n∑
k=0

akbn−k (Cauchy

product) then
∑∞

n=0 cn = AB

• Cauchy product of two absolutely conver-
gent series is absolutely convergent.
• if {kn} is a sequence in N such that every
integer appears once and if a′

n = akn
then a

rearrangement of
∑

an is of type
∑

a′
n

• Riemann Rearrangement Theorem : if series
of real numbers

∑
an converges but not abso-

lutely then for any −∞ ≥ α ≥ β ≥ ∞ series∑
an can be rearranged to

∑
a′
n with partial

sum s′n such that
lim inf s′n = α and lim sup s′n = β

• for a given double sequence {aij} for i =

1, 2, . . . , j = 1, 2, . . . if
∞∑
j=1

|aij| = bi and
∑

bi

converges then
∞∑
i=1

∞∑
j=1

aij =

∞∑
j=1

∞∑
i=1

aij

, same holds true i.e. summation can be
changed if each of aij ≥ 0 also.
•

lim
n→∞

β∑
r=α

1
n
f(

r

n
) =

b∫
a

f(x)dx

where replace :

r/n → x

1/n → dx

a = lim
n→∞α/n

b = lim
n→∞β/n

( to derive use simple notion of Riemann Integra-
tion: if f is integrable in [a,b] then for every ϵ > 0

∣∣∣∣∣∣
n∑
i=1

f(ti)∆(xi)−

b∫
a

f(x)d(x)

∣∣∣∣∣∣ < ϵ holds for some parti-

tion p([xi, xi+1]
n−1
1 ) of [a,b] and for any ti ∈ [xi, xi+1])

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 Some limits and theorems

• L’Hospital Rule : if f,g are real differentiable
functions in (a,b) (for −∞ ≤ a < b ≤ ∞)
such that g′(x) ̸= 0 in (a,b) then as x → a

f(x) → 0,g(x) → 0 or if g(x) → ±∞ and
if f′(x)

g′(x) → A then f(x)
g(x) → A (analogous result

holds for x → b) (is also true if f,g are complex
valued and f(x) → 0,g(x) → 0)

• for f,g : D ⊂ R → R, if lim
x→c

f(x) = 0 and

g(x) is bounded in some deleted neighbour-
hood of c then lim

x→c
f(x)g(x) = 0

• if lim
x→c

f(x) = l and g is continuous at l

or in some set whose limit point is l then
lim
x→c

g(f(x)) = lim
x→l

g(x)

• lim
n→∞

n∑
m=1

1
m

− lnn = γ a fixed number

• lim
n→∞ zn = 0 if |z| < 1

• if a > 1 and p(n) is a fixed polynomial in n

then lim
n→∞ an

p(n) = ±∞ (depends on p(n), pre-
cisely on coefficient of largest degree term).

• lim
n→∞n1/n = 1 in particular if |z| ̸= 0 then

lim
n→∞ |z|1/n = 1

• lim
n→∞

(
1+ a

n

)n
= ea

• for α ∈ R,p > 0 we have
lim
n→∞ nα

(1+p)n = 0

• if α,β > 0 and x ∈ R then :
■ lim

x→∞ (ln(x))α

xβ = 0

■ lim
x→∞ xα

eβx = 0

• from some preceding points we get
growth of ln(n) < growth of n < growth of p(n)
(for non constant p(n).) < growth of an (a > 1) <

growth of n!.
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• series
∞∑
n=1

1
np

converges for p > 1 and di-

verges for p ≤ 1

• series
∞∑
n=2

1
n(lnn)p

converges for p > 1

and diverges for p ≤ 1 this result can be

continued to series like
∞∑
n=2

1
n lnn(ln lnn)p

,

∞∑
n=2

1
n lnn ln lnn(ln ln lnn)p

and so on.

• for series such as
∞∑
n=0

qnzkn for some k ≥ 0

fixed then this series is equal to series
∑
n≥0

anz
n

where

an =

{
qn/k if n = 0,k, 2k, 3k, . . .
0 otherwise

Thus R = lim sup 1/|an|
1/n = q−1/k. for∞∑

n=0

qnzkn series.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Uniform Convergence

• define uniform norm for a function f : A ⊆
R → R as ||f||A = sup(|f(a)| for a ∈ A)

• A sequence of bounded functions {fn} in R

converges uniformly to f in domain A ⊆ R iff
||fn − f||A → 0 i.e. the uniform norm of fn − f

converges to0.
• one way to find the uniform norm for a func-
tion is to differentiate it and find its maximum
on domain.
• Dinni’s Theorem : if {fn} is a monotone se-
quence of continuous functions on [a,b] (closed
and bounded) that converges to f which is con-
tinuous on [a,b] then the convergence is uni-
form.

• if f(x) is uniformly continuous on R and non

zero at integer values then
∞∑
n=1

1
f(n)

is never

convergent (use |f(x)| ≤ A|x|+B )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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