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1 Properties of R.

• When Set Q (rationals) is extended to form
a set with least upper bound property (every
bounded subset contains a least upper bound)
then the field generated is the field of reals (R.)

• R is uncountable

• Archemidean property : for every real num-
ber x there exist a natural number nx such that
x < nx.

• Density property : if x and y are distinct real
numbers say x < y then there exist a rational
number r such that x < r < y,
similarly if p and q are distinct real numbers
say p < q,then there exist irrational number s
such that p < s < q.

• For every real x > 0 and integer n > 0 there
exist only one positive real y such that yn = x

• If r is rational and x is irrational number then
r+ x and rx, are irrational.

• We can define bx for every real b and x as
the supremum of {bt} for t ≤ x , t rational

• For b > 1 and y > 0 there exist a unique real x
such that bx = y

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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2 Metric Spaces

2.1 Definitions

• Ordered pair set X is Metric space if there
exist d a function from X to R with following
properties for any p,q, r ∈ X

1. d(p,q) > 0 if p ̸= q and d(p,p) = 0

2. d(p,q) = d(q,p)

3. d(p,q) ≤ d(p, r)+d(r,q)

if X is metric space then elements of it are called
points and d is called distance function
• Rk is metric space (usually taken as Eu-

clidean space with norm |x| = (

k∑
i=1

x2k)
1/2 called

euclidean norm or L2 norm)
• Neighborhood of a point p is a set Nr(p)

consisting of all points q such that d(p,q) < r
for some r > 0
• A point p is a limit point of set E if every
neighborhood of p contains a point q ̸= p such
that q ∈ p
• If p ∈ E is not a limit point of E then it is
called an isolated point
• Set E is closed set if every limit point of E is
a point of E
• A point p is interior point of E if there is a
neighborhood N of p such that N ⊂ E
• Set E is open set if every point of of E is an
interior point of E
• Set E is perfect set if E is closed and every
point of E is a limit point of E
• E is bounded if there exist a real number M
and a point q ∈ X such that d(p,q) < M for all
p ∈ E
• E is dense in X if every point of X is a limit
point of E or a point of E.
• Closure of a set E (= Ē) is the union of the
set and its limit points
• Interior of a set E (= Eo) is the set of all
interior points of E

• Open cover of a set E is a collection of open
subset {Gα} of X such that X ⊂ ∪

α
Gα.

• E is compact if every open cover of E has
finite sub cover
• Two sets A and B are separated if A∩ B̄ and
Ā∩B is empty
• E is connected set if it is not a union of two
non empty separated sets. (remark separated
sets are disjoint but disjoint sets need not be
separated)
• A metric space is separable if it contains a
countable dense subset (eg: every Rk is separa-
ble)
• set {y ∈ X|dX(x,y) < r for fixed r > 0, x ∈ X}
is called an Open ball of radius r centered at x.
• A set A ⊂ (X,d) metric space is Totally
Bounded if for every ϵ > 0 there exists a fi-
nite collections of open balls of radius ϵ with
centers in A whose union contains A.
• A collection of open sets {Vα} is a base of X
if for every x ∈ X and x ∈ G open in X then
there exist α such that x ⊂ Vα ⊂ G i.e. every
open set in X is a union of sets of type Vα.
• A point p is condensation point of set E if
every neighborhood of p contains uncountably
many points of of E

2.2 Properties and theorems in
Metric spaces

• Every neighborhood is an open set
• If p is a limit point of E then every neigh-
borhood of p contains infinitely many points of
E

• E is open if and only if (iff) its complement
Ec is closed
• Arbitrary union of open sets are open
• Arbitrary intersection of closed sets are
closed
• Finite intersection of open sets are open
• Finite union of closed sets are closed
• Closure of a set is closed
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• E = Ē ⇐⇒ E is closed

• Ē is the smallest closed set containing E

• If E is a closed set in R and if it is bounded
above then it contains its supremum or if it is
bounded below then it contains its infimum.

• For Y ⊂ X, E ⊂ Y is open relative to Y iff
E = Y ∩G for some open set G in X

• For K ⊂ Y ⊂ X, K is compact relative to X
iff K is compact relative to Y

• Compact sets in metric spaces are closed

• Every closed subset of a compact set is com-
pact

• If F is closed and K compact in a metric space
then F∩K is closed so is compact.

• If {Kα} is a collection of compact sets such
that intersection of every finite sub-collection of
these is non empty then ∩

α
Kα is non empty.

• If E is an infinite subset of a compact set K
then E has a limit point in K

• Heine-Borel Theorem: E is compact set of
Rk iff (⇐⇒ ) E is closed and bounded

• E is compact set of Rk iff every infinite subset
of E has a limit point in E

• Weierstrass theorem : Every bounded infi-
nite set of Rk has a limit point in Rk

• Countable union of countable set are count-
able.

• If P is a non empty perfect set in Rk then P
is uncountable

• Cantor Set P : construction: let E1 =

[0, 1], E2 = [0, 1/3] ∪ [2/3, 1] , E3 = [0, 1/9] ∪
[2/9, 3/9] ∪ [6/9, 7/9] ∪ [8/9, 1] and En be
formed by removing middle 3rd of the inter-
vals (open). then P = ∩∞

n=1Ei.
property : P is non empty compact perfect set
that does not contain any open intervals

• A subset E of R1 is connected iff x,y ∈ E and
x < z < y then z ∈ E
• Eo(interior) is always open

• Eo = E iff E is open

• Complement of Eo is the closure of comple-
ment of E
• REMARK : E and Ēmay not have same interi-
ors also, E and Eo may not have same closures
• Disjoint open and closed sets are separated
• A connected Metric space having atleast two
points is uncountable
• Closure of connected set is connected but in-
terior of connected set may not be connected
• Every separable metric space has a countable
base and vise-versa
• If X is a metric space such that every infinite
subset has a limit point then X is separable
• Every compact metric space has a countable
base thus is separable.
• If X is a metric space in which every infinite
subset has a limit point then X is compact.
• In a metric space X with countable base for a
subset E, set of condensation points P in E form
a perfect set and Pc ∩ E is at most countable.
• Every closed set of a separable metric space
is union of a perfect set (may be empty set) and
a set at most countable
• Every countable closed set in separable space
has an isolated point.
• Every open set in R1 is at most countable
union of disjoint open intervals.
• every Totally bounded set is bounded
(converse is not true eg: if we define discrete
metric

d(x,y)

{
0 if x = y,
1 otherwise

for R then any infinite subset is bounded for
N ≥ 1 but not totally bounded as, if ϵ < 1 then
only infinite collection of ϵ-balls can cover the
infinite set.)
• Compact Set are Totally bounded.
• Closure of totally bounded sets are totally
bounded.
• Finite union of totally bounded sets is
bounded.
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• Every subset of totally bounded set is totally
bounded (unlike compact sets).
• a set is compact iff it is complete and totally
bounded.
• restating preceding point: a metric space is
compact iff it is complete and totally bounded.
• with usual metric induced by norms L1 or L2
for Rk, Totally bounded is same as bounded so
the preceding point just becomes Heine-Borel
Theorem.
• a metric space is totally bounded if every se-
quence has a Cauchy subsequence.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Sequence and series

• A sequence {xn} converges to x in a metric
space if for every ϵ > 0 there exist an integer N
such that d(xn, x) < ϵ if n ≥ N.
• A sequence {xn} is a Cauchy sequence when-
ever for ϵ > 0 there exist integer N such that
d(xn, xm) < ϵ if n,m ≥ N.
• If sequence sn → s and tn → t then se-
quence sntn→ st.
• Every bounded sequence in a compact space
contains a convergent subsequence
• Subsequential limits of a sequence {pn} forms
a closed set
• Every convergent sequence is a cauchy se-
quence
• A metric space X is complete iff every cauchy
sequence in X converges in X
• In a compact metric space every cauchy se-
quence is convergent so it is complete
• Every cauchy sequence is bounded
• Cauchy sequences in Rk are convergent as
every bounded set has a compact closure in
Rk (namely a k− cell) so Rk is complete with
usual L2 norm
• if E is the set of subsequential limits for se-
quence sn then define lim sup sn = sup(E)

and lim inf sn = inf(E) (this is possible as E

is closed)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Continuity

• Limit : a function f(x) maps an open set
E ⊂ X into Y then for a limit point p of E if
f(x)→ q as x→ p then the limit is denoted by
lim
x→p

f(x) = q or equivalently if there is a point

q ∈ Y such that for every ϵ > 0, ∃δ > 0 such that
dY(f(x),q) < ϵ for all points x ∈ E for which
0 < dX(x,p) < δ.

• lim
x→p

f(x) = q iff for every sequence {pn}

in E such that pn ̸= p lim
n→∞pn = p then

lim
n→∞ f(pn) = q

i.e. limit f(p) exist and is equal to q iff every
sequence {pn} converging to the p has same
limit f(pn)→ q

• A function f : X → Y is continuous at
p ∈ X if for every ϵ > 0 ∃δ > 0 such that
dY(f(x), f(p)) < ϵ whenever dX(x,p) < δ , if f
is continuous at every point in X then it is said
to be continuous which is equivalent to :
f(x) is continuous iff for every open set V ⊂ Y
the preimage f−1(V) is open in X (or equiva-
lently preimage of closed sets are closed).

• If X is a compact space and and f is contin-
uous map from X to any space Y then f(X) is
compact i.e. f maps compact sets to compact
sets.

• From above point we get if f is a continuous
function from a compact space X then ∃p,q ∈
X such that f(q) ≤ f(x) ≤ f(p) ∀x ∈ X
i.e. f(x) attains its supremum and infimum for
points x ∈ X itself.

• If f is a one-one continuous map from com-
pact space X then f−1 defined as f−1(f(x)) = x

is a continuous map from f(X)→ X

• If E is non-compact set of R1 then :
■ There exist a continuous function from E

which is not bounded (take g(x) = x if E is un-
bounded or h(x) = 1/(x− x0) if E is bounded
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and and for x0 ∈ Ē but x /∈ E)
■ There exist a continuous function from
E which is bounded but has no maximum.
(g(x) = 1/(1+ (x− x0)

2) or h(x) = x2/(1+
x2))
• If f : X → Y is continuous function and
E ⊂ X is connected subset then f(E) is con-
nected i.e. f maps connected sets to connected
set

• intermediate value theorem is a corollary of
the above point.

• f : (a,b) ⊂ R → R is monotonic if x <
y =⇒ f(x) ≤ f(y) ∀x,y ∈ (a,b) (monotonic
increasing) or if f(x) ≥ f(y) ∀x,y ∈ (a,b)
(monotonic decreasing).

• If I is any interval in R and if f : I → R is
continuous and one-one then f is strictly mono-
tone.

• Define f(x−) = lim
t→x−

f(t) and f(x+) =

lim
t→x+

f(t)

• If f : E → R is monotonic then f(x+) and
f(x−) exist for all x ∈ E
• If f is continuous then f(Ē) ⊂ f(E)
• If f a real function from some subset of R

having intermediate value property (f(a) <
c < f(b) then f(x) = c for x ∈ (a,b)) and
for every rational r and the set {x|f(x) =

r, r is rational in domain of f} is closed then f
is continuous.

• If f and g are continuous functions from
X→ Y then for dense set E ⊂ X dense in X if
f(p) = g(p) ∀p ∈ E then f ≡ g in X i.e. if two
continuous functions agree on a dense set in
the domain then both are same (in that domain)
i.e. a continuous mapping is determined by
its value on dense subset of its domain

• If f : X → Y is continuous and if E ⊂ X is
dense in X then f(E) is dense in f(X)

• f : E → Y for E compact is continuous iff
graph of f = {(x, f(x))} is compact

• Every continuous open map from R→ R is
monotonic.

5 Uniform continuity

• A function f : X→ Y is uniformly continu-
ous if for every ϵ > 0 there exists δ > 0 such that
dY(f(a), f(b)) < ϵ for all a,b ∈ X when ever
dX(a,b) < δ.

• For any non empty set E of a metric space X
the function ρE : X → R defined by ρE(x) =

inf(dX(x,e)) for e ∈ E (i.e. the distance from
x to E) is uniformly continuous.

• If f is continuous function from a compact
metric space X into a metric space Y , then f is
uniformly continuous.

• If f : X → Y is uniformly continuous then
{f(xn)} is a Cauchy sequence in Y for every
Cauchy sequence {xn} in X.

• For f : X→ Y , g : Y → Z, Y compact, if g is
continuous and one-one and
■ If h(x) = g(f(x)) is continuous then f is

continuous
■ If h(x) = g(f(x)) is uniformly continuous

then f is uniformly continuous
(use g−1 is uniformly continuous)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Uniform continuity on R

• R Uniform Continuity Theorem : for E ⊆ R

and f : E → R is uniformly continuous on
E iff for any sequences xn,un in E such that
|xn−un|→ 0 then |f(xn)− f(un)|→ 0. Nega-
tion of this theorem can be (most of the time)
used to prove non-uniform continuity in R i.e.
■ f is not uniformly continuous on E iff there

exist ϵo > 0 (fixed) and sequences xn, un in E
such that |xn −un|→ 0 but |f(xn)− f(un)| ≥
ϵo.
• for E ⊂ R and f : E→ R is uniformly con-
tinuous then ∃A,B ∈ R such that
|f(x)| ≤ A|x|+B i.e. |f(x)|/x2→ 0 as x→∞.

• For non compact bounded set E ⊂ R1 :
■ There exist continuous function from E

which is not uniformly continuous (set f(x) =

1/(x− x0) for some limit point x0 of E such
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that x0 /∈ E this is possible as E is bounded)
• for f and g uniformly continuous :
■ f ◦ g i.e. f(g(x)) is uniformly continuous

(whenever it is defined)
■ af(x)+bg(x) is uniformly continuous for
a,b ∈ R.
■ fg = f(x)g(x) may not be uniformly contin-

uous.
■ if f(x) is uniformly continuous on A ⊆ R

and |f(x)| ≥ k > 0 ∀x ∈ A then 1
f(x) is uni-

formly continuous.
• f : E ⊂ R → R for bounded set E is uni-
formly continuous then f(E) is bounded.

• if f : (a,b)→ R is continuous on (a,b) and
lim

x→a+
f(x) and lim

x→b−
f(x) exists finitely then

f(x) is uniformly continuous in (a,b) (note
the domain interval may be unbounded also i.e.
like (−∞,a) or (−∞,∞) and converse that
if f is uniformly continuous then these limits
existing for unbounded intervals may not be
true).

• if f : R → R is differentiable in R and
lim

x→∞ or −∞ |f′(x)|→∞ then f is not uniformly

continuous on R (use mean value theorem
i.e. |f(x) − f(x+ 1)| = |f′(x+ δ)| for some
0 < δ < 1.)

• Continuous Extension Theorem: A function
continuous from (a,b) ⊂ R can be extended
to being continuous in [a,b] iff it is uniformly
continuous.

• Lipschitz Function : f : E ⊆ R → R is a
Lipschitz function if there exists k > 0 ∈ R

such that |f(x)− f(y)| ≤ k|x−y| ∀x,y ∈ E.
• if f′(x) is bounded then f(x) is Lipschitz (use
mean value theorem).

• if f : E→ R is a Lipschitz function then f is
uniformly continuous on A.
• if f,g function from E→ R are Lipschitz and
bounded the fg = f(x)g(x) is Lipschitz.

• a periodic function (f(x+ p) = f(x) ∀x in
defined range and p finite constant) in R is al-
ways Uniformly continuous (use the interval
of periodicity i.e. the region of function which

gets repeated is a compact interval).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Discontinuity

• Types
■ first kind or simple discontinuity : discon-

tinuous at x but f(x−) and f(x+) exists.
■ All others are categorized as second type
• Monotonic functions have no discontinuities
of second type

• If f is monotonic from (a,b) then set of
points in (a,b) at which f is discontinuous is
at most countable.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 Differentiation in R

• Definition: for a function f : [a,b] → R

its derivative is f′(c) = lim
x→c

f(x)−f(c)
x−c for c ∈

[a,b]

• If f is defined on [a,b] and differentiable for
x ∈ [a,b] then f is continuous at x i.e. dif-
ferentiable at a point =⇒ continuity at the
point (provided function is defined in some
neighbourhood of the point)

• For f defined on [a,b], if f has a local max-
imum/minimum at a point x ∈ (a,b) then
f′(x) = 0

• Generalized mean value theorem : f and g
are continuous real functions on [a,b] which
are differentiable in (a,b) then there is a x ∈
(a,b) such that

f(b)−f(a)
g(b)−g(a) =

f′(x)
g′(x)

• For f is differentiable in (a,b) if :
■ f′(x) ≥ 0 ∀x ∈ (a,b) then f is monotoni-

cally increasing
■ f′(x) = 0 ∀x ∈ (a,b) then f is constant
■ f′(x) ≤ 0 ∀x ∈ (a,b) then f is monotoni-

cally decreasing
• For f real valued differentiable in [a,b], if
f′(a) < λ < f′(b) then there exist x ∈ (a,b)
such that f′(x) = λ (similar result holds for
f′(b) < f′(a))
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• Taylor’s Theorem : for f real function on
[a,b] , n ∈ N , f(n−1) continuous on [a,b]
f(n)(t) exists ∀t ∈ (a,b) then for distinct
α,β ∈ [a,b] there exist x ∈ [α,β] such that

f(β) =
n−1∑
k=0

f(k)(α)

k!
(β−α)k +

f(n)(x)

n!
(β−α)n

• If f is a real valued or vector valued func-
tion from R such that if f′ is bounded on the
domain then f is uniformly continuous in the
domain (use mean value theorem)
• If f : (a,∞)→ R is twice differentiable and
M0,M1,M2 are supremums of |f|, |f′|, |f′′| re-
spectively then on (a,∞)M2

1 ≤ 4M0M2.
• If f : R→ R is is such that |f′(x)| ≤ A < 1 ∀x
then a fixed point of f (f(x) = x) exists and
{xn+1} = {f(xn)} converges to this point for
some arbitrary x1 real
• If f : [a,b] → R is differentiable , f(a) = 0
and if there exist A ∈ R such that |f′(x)| <
A|f(x)| on [a,b] then f ≡ 0 on [a,b]
• For every closed subset E of R there exist
a infinitely differentiable function F : R → R

whose zeroes are exactly E (use functions like
f(a,∞) = e1/(a−x) for x > a and 0 else where ,
f(−∞,b) = e1/(x−b) for x < b and 0 else where
or f(a,b) = e1/(x−a)(x−b) for a < x < b and 0
else where to cover range of open set Ec)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Zeros of functions

• The set of zeroes of function f : X→ R is a
closed set
• Given any closed set E ⊂ X there exist a uni-
formly continuous function with set of zeroes
exactly equal to E (as zeroes of ρE = Ē = E ex-
actly)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 Convex functions

• A function f : (a,b) → R is convex if for

a < x,y < b and 0 < λ < 1
f(λx+(1− λ)y) ≤ λf(x)+ (1− λ)f(y)

• For f convex and g is an increasing convex
function then g(f(x)) is convex
• f is convex iff f′ is monotonically increasing
iff f′′ ≥ 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 Riemann-Stieltjes
Integration

• For a given interval [a,b] a partition p of
[a,b] is set of points {xi} where a = x0 ≤
x1 ≤ x2 ≤ · · · ≤ xn = b, ∆xi = x1 − xi−1
for i = 1, 2, . . . ,n, if f is a real bounded function
on [a,b], Mi = sup f(x) for xi−1 ≤ x ≤ xi,
mi = inf f(x) for xi−1 ≤ x ≤ xi, then :
■ Upper Riemann sum : w.r.t P is

U(P, f) =
∑n

i=1Mi∆ixi.

■ Lower Riemann sum : w.r.t P is

L(P, f) =
∑n

i=1mi∆ixi.

■ Upper Riemann integral : is∫b

a fdx = infU(P, f).

for all partitions P of [a,b]
■ Lower Riemann integral : is∫b

a
fdx = supL(P, f).

for all partitions P of [a,b]
■ f is Riemann integrable (if R is set of all

Riemann intergrable functions, then f ∈ R) if∫b

a fdx =
∫b

a
fdx

and this upper or lower Riemann integral is
defined as

∫b
a fdx

• Riemann-Stieltjes Integral if α is a monoton-
ically increasing function in [a,b] then, for parti-
tion P = {xi} of [a,b], if ∆αi = α(xi)−α(xi−1)

then
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U(P, f,α) =
∑n

i=1Mi∆αi.
L(P, f,α) =

∑n
i=1mi∆αi.∫b

a fdα = infU(P, f,α).∫b

a
fdα = supL(P, f,α).

and we say f is integrable w.r.t α (f ∈ R(α))

if
∫b

a fdα =
∫b

a
fdα and is this is defined as∫b

a fdα

•
∫b

a
fdα ≤

∫b

a f

• f ∈ R(α) iff ∀ϵ > 0 ∃ a partition P such that

U(P, f,α)− L(P, f,α) < L(P, f,α).

• If f ∈ R then for some partition P = {xi} of
[a,b] such that U(P, f,α) − L(P, f,α) < ϵ we
have if si, ti ∈ [xi−1, xi] then∑n

i=1 |f(si)− f(ti)|∆αi < ϵ.∣∣∣∑n
i=0 f(ti)∆αi −

∫b
a fdα

∣∣∣ < ϵ.

• If f is continuous on [a,b] then f ∈ R(α) in
[a,b]
• If f is monotonic on [a,b] and α continuous
then f ∈ R(α).
• If f is bounded on [a,b] and has finitely
many discontinuities in [a,b] and α is con-
tinuous on [a,b] then f ∈ R(α).
• If f ∈ R(α) on [a,b], m ≤ f ≤M and ϕ is
continuous on [m,M] then ϕ(f(x)) ∈ R(α).
• For any f1, f2 ∈ R(α) in [a,b] we have :
■ If f1 ≤ f2 then

∫b
a f1dα ≤

∫a
a f2dα

■ If |f| ≤M on [a,b] then∣∣∣∫ba fdα∣∣∣ ≤M(α(b)−α(b)).

■ f1f2 ∈ R(α).
■ |f1| ∈ R(α) and

∣∣∣∫ba f1dα∣∣∣ ≤ ∫b
a |f1|dα.

• For

I(x) =

{
0 x ≤ 0
1 x > 0

we have
■ a < s < b , f bounded on [a,b], continuous

at s and if α(x) = I(x− s) then

∫b
a f(x)dα = f(s)

■ If cn ≥ 0 is such that
∑
cn converges

then for any distinct points {sn} in (a,b) and
α(x) =

∑∞
n=1 cnI(x− sn) then for any contin-

uous f on [a,b].∫b
a fdα =

∑∞
n=1 cnf(sn).

• If α′ ∈ R on [a,b] then for any f ∈ R(α) on
[a,b]. ∫b

a fdα =
∫b
a fα

′dx.

• change of variable : if ϕ is straightly in-
creasing continuous function that maps [A,B]
onto [a,b] then for f ∈ R(α) , β = α(ϕ) and
g = f(ϕ) we have∫B

A gdβ =
∫b
a fdα.

• For f ∈ R on [a,b] if F(x) =
∫x
a f(t)dt

for any a ≤ x ≤ b then F is continuous on
[a,b] and if f is continuous at x0 ∈ [a,b] then
F′(x0) = f(x0).
• Fundamental theorem of calculus : for f ∈
R on [a,b] if ∃ F′ = f on [a,b] then∫b

a f(x)dx = F(b)− F(a)

• If f ≥ 0, f is continuous on [a,b] and∫b
a f(x)dx = 0 then f ≡ 0 (here continuity is

important for eg if f(x0) = 1 and 0 otherwise
then

∫
fdx = 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 Series and sequence of Func-
tions

• {fn(x)} a sequence of functions in x ∈ E

is said to converge to f(x) point wise in E if
f(x) = lim

n→∞ fn(x) ∀x ∈ E
• Similarly {fn} is said to converge uniformly
on E to f if for every ϵ > 0 ∃N such that n ≥ N
implies

|fn(x)− f(x)| ≤ ϵ.
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for all x ∈ E
• Difference between these convergence is that
for point wise convergence N depends on both
x and ϵ but for uniform N depends only on ϵ
• Cauchy analogue : {fn} converges uniformly
on E iff for every ϵ > 0 ∃N such that for
n,m ≥ N

|fn(x)− fm(x)| ≤ ϵ

for all x ∈ E
• if lim

n→∞ fn(x) = f(x) for every x ∈ E and

if Mn = sup
x∈E

|fn(x) − f(x)| then fn → f uni-

formly in E iff Mn→ 0 as n→∞.
i.e. fn → f convergence is uniform on a set E
iff ||fn − f||E→ 0
(for norm ||.||E : (f : E→ R)→ R+ defined as
sup
x∈E

|f(x)|.)

• Sequence of functions from A ⊆ R i.e. fn :

A → R converging to f(x) is non-uniformly
convergent on A0 ⊆ A iff for some ϵo > 0
(fixed) there exists a subsequences fnk

of fn
and a sequence {xk} ∈ A0 such that
|fnk

(xk) − f(xk)| ≥ ϵo for all k ∈ N. (direct
converse of definition of uniform convergence
in R)
• Weierstrass M test : if |fn(x)| ≤Mn on ev-
ery x ∈ E and

∑
Mn converges in E then

∑
fn

converges uniformly in E
• Limit and Continuity : if fn→ f uniformly
in E and x is a limit point of E then

lim
t→x

lim
n→∞ fn(x) = lim

n→∞ lim
t→x

fn(x).

i.e. limits can be interchanged if convergence is
uniform.
As continuity depends on above limits we have
{fn} are continuous functions converging uni-
formly to f then f is continuous (in E)
• For sort of converse of above continuity point
: if K is compact, {fn} continuous functions
on K, converges point wise to continuous func-
tion f on K and fn(x) ≤ fn+1(x) ∀x ∈ K,n =

1, 2, . . . then the convergence fn→ f is uniform.

• Integration : if fn ∈ R(α) in [a,b] for
n = 1, 2, . . . and fn → f uniformly in [a,b]
then f ∈ R(α) on [a,b] and∫b

a fdα = lim
n→∞

∫b
a fndα.

i.e. integration and limits can be changed if
convergence is uniform
• Differentiation : if {fn} are differentiable in
[a,b] and {fn(x0)} converges for some point in
x0 ∈ [a,b] and {f′n} converges uniformly on
[a,b] then {fn} converges uniformly to a differ-
entiable function f on [a,b] and

f′(x) = lim
n→∞ f′n(x)

in [a,b]
i.e. if set of differentiable fn converge for any
one point x0 and their differentials converge
uniformly then fn→ f uniformly and f′n→ f′

• Equicontinuous functions : family of com-
plex functions F = {f} on set E is equicontinu-
ous if for every ϵ > 0 there exist δ > 0 such that
|f(x)− f(y)| < ϵ whenever d(x,y) < δ, x,y ∈ E
for every f ∈ F (this is another level of restric-
tion on set of uniform continuous functions that
δ depends only on ϵ and not on f ∈ F )
• Pointwise bounded : a sequence {fn} is point
wise bounded on E if {fn(x)} is bounded ∀x ∈
E or there exist a finite valued function ϕ on
E such that |fn(x)| < ϕ(x) ∀x ∈ E,n = 1, 2, . . .
• Uniformly bounded : {fn} is uniformly
bounded on E is there exist a number M such
that |fn(x)| < M ∀x ∈ E,n = 1, 2, . . .
• Every uniformly convergent sequence of func-
tions is uniformly bounded.
• If {fn} is an equicontinuous sequence of func-
tion on compact set K and fn converges point
wise on K then the convergence is uniform.
• If {fn} is pointwise bounded on countable
set E then it has a subsequence {fnk

} such that
{fnk

(x)} converges ∀x ∈ E
(choose x1 arbitrary x1 ∈ E, {fn(x1)} is bounded
it has a converging subsequence {f1,k}, for x2 ̸=
x1 the subsequence f1,k(x2) is also bounded so
has converging subsequence {f2,k} now doing

9



the same for every xn ∈ E we exhaust E and
choose fn,n as the needed subsequence)

• For a given metric space X let C (X) de-
note a set of all complex valued, continuous
and bounded functions with domain X and by
supremum norm : ||f|| = sup

x∈X

|f(x)| this becomes

a Complete metric space.

• If K is compact metric space and each fn ∈
C (K) and if {fn} converges uniformly on K
then {fn} is equicontinuous on K

• for converse of above point : if K is compact
and every fn ∈ C (K) and {fn} is pointwise
bounded and equicontinuous on K then {fn} is
uniformly bounded on K and has a uniformly
convergent subsequence. (use facts that K has a
countable dense subset)

• Weierstrass Theorem : if f is a continu-
ous complex function of [a,b] then there ex-
ists sequence of polynomials Pn such that
lim
n→∞Pn(x) = f(x) uniformly on [a,b]
(if f is real the Pn can be taken as real polyno-
mial)
i.e. every continuous function (in R or C) can be
approximated to a given error by a polynomial
(in R or C).

• Algerbra A in E : is a family of complex
functions defined on E such that if f,g ∈ A
then f+g, fg, cf ∈ A for any complex constant
c i.e A is closed under addition, multiplication
and scalar multiplication

• If for every {fn} ⊂ A , fn → f uniformly
and if this implies f ∈ A then A is said to be
uniformly closed

• If B is set of all functions which are limit of
uniformly convergent sequences in A then B
is uniform closure of A and it forms an algebra
containing A

• Stone-Weierstrass Theorem : if A is an al-
gebra of real continuous functions on a com-
pact set K, A separates points on K (i.e. if
x1 ̸= x2 ∈ K ∃g ∈ A : g(x1) ̸= g(x2)) and van-
ishes at no point in K then the uniform closure
B of A consist of all real continuous functions

on K

• If same conditions as in above point hold for
A algebra of complex functions and in addi-
tion is A self adjoint (i.e f ∈ A =⇒ f̄ ∈ A )
then its uniform closure contains all complex
continuous functions on K
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 Function of Several
variables

• Let L(X,Y) denote the set of all linear func-
tions or transforms from metric space X to met-
ric space Y

• For A ∈ L(Rn, Rm) the usual norm ||A|| is
defined as sup |Ax| for |x| ≤ 1 in Rn

• Properties of this norm:
■ |Ax| ≤ ||A|| |x|, ||A + B|| ≤ ||A|| + ||B||,
||cA|| = |c| ||A||, ||AB|| ≤ ||A|| ||B|| whenever the
compositions are compatible
• Let L(Rn,Rn) = L(Rn) which is the set of all
linear operators on Rn

• IfΩ is the set of all invertible linear operators
on Rn then :
■ If A ∈Ω, B ∈ L(Rn) and

||B−A||.||A−1|| < 1

then B ∈Ω (prove B is one-one)
■ From above point we get that ||B−A|| <

1/||A−1|| then B ∈Ω so clearly this makes
Ω an open set of L(Rn)

■ Mapping A→ A−1 on Ω is continuous
• Differentiation of functions in several vari-
ables :
■ For real diffrentiable functions we have

lim
h→0

f(x+h)−f(x)
h = f′(x) which implies in

some small neighborhood of x we have f(x+
h)− f(x) = f′(x)h+ r(h) where r(h) is called
remainder and is small as in lim

h→0
r(h)/h = 0.

■ From this we can interpret that we can ap-
proximate f(x+h) near x (very near) by a lin-
ear transform f′(x) (plus a small remainder)
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■ Going with the above sense if f : (a,b)→
Rm (a vector map) we can interpret f′(x) to be
a vector y ∈ Rm such that f(x+ h) − f(x) =

yh+r(h) where lim
h→0

r(h)/h = 0 rewriting this

we get lim
h→0

{
f(x+h)−f(x)−yh(=f′(x)h)

h

}
= 0.

thus we define f′(x) as a linear transform from
R→ Rm which satisfies the above limit
■ Thus we define for open E ⊂ Rn, f : E →
Rm and x ∈ E if there exist a liner transforma-
tion A ∈ L(Rn,Rm) such that

lim
h→0

|f(x+h)−f(x)−Ah|
|h|

= 0.

then we say f is differentiable at x and f′(x) =
A (note: h is a vector here and norms in numer-
ator and denominator belong to Rn and Rm

respectively)
• Partial derivative : if f → E ⊂ Rn → Rm,
{e1,e2, . . ,en} and {u1,u2, . . ,um} are standard
basis (of type (0, 0, . . , 1, 0, . . 0)T ) of Rn and Rm

respectively then the components of f are real
functions f1, f2, . . fm such that
f(x) =

∑m
i=1 fi(x)ui = (f1(x), f2(x), . . , fm(x))T

i.e. fi(x) = f(x).ui (here (.)T denotes
transpose,‘.’ is usual dot product)
for x ∈ E define

∂fi
∂xj

(x) = lim
t→0

fi(x+tej)−f(x)
t .

• If for open E ⊂ Rn, f : E → Rm, if f is
differentiable at x ∈ E then ∂fi

∂xj
(x) exists and

∂f
∂xj

= f′(x)ej =

m∑
i=1

∂fi
∂xj

(x)ui =(
∂f1

∂xj
(x),

∂f2

∂xj
(x), . . ,

∂fm

∂xj
(x)

)T

for 1 ≤ j ≤ n (note : f′(x)ej ∈ Rm as we
define f′(x) ∈ L(Rn, Rm))
• From above point we get the matrix represen-
tation of f′(x) i.e.

[f′(x)] =


∂f1
∂x1

(x) ∂f1
∂x2

(x) . . ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) . . ∂f2
∂xn

(x)
...

... . . . ...
∂fm
∂x1

(x) ∂fm
∂x2

(x) . . ∂fm
∂xn

(x)



• If f maps convex open set E ⊂ Rn→ Rm, f
is differentiable in E and if there exist real num-
ber M such that ||f′(x)|| ≤ M ∀x ∈ E then
|f(b)− f(a)| ≤M|b−a| ∀a,b ∈ E (use mean
value theorem by converting domain to R)

• f is said to be continuously differentiable if
f′ is continuous in the domain E and this is
denoted by f ∈ C ′(E)

• Suppose for open E ⊂ Rn, f : E→ Rm then
f ∈ C ′(E) iff partial derivatives ∂fi

∂xj
(x) exists

and are continuous for each 1 ≤ i ≤ m and
1 ≤ j ≤ n.

• For f : E → R (a real valued function) de-
fined on an open set E ⊂ Rn and if its par-
tial derivatives ∂f

∂x1
, . . , ∂f

∂xn
are bounded in E

(obviously exists) then f is continuous in E (a
weaker hypothesis and weaker result compared
to above point)

• If f is differentiable mapping from open con-
nected set E ⊂ Rn → Rm and f′(x) = 0∀x ∈
E then f is constant in E
• Contraction functions (used in proofs):
■ ϕ : X→ X is a contraction if there is c < 1

such that d(ϕ(x),ϕ(y)) < cd(x,y)∀x,y ∈ X
• If ϕ(x) is a contraction in X s complete then
there is only one fixed point of ϕ in X i.e. there
exist a unique x ∈ X for which ϕ(x) = x and
no other points satisfy this condition

• Inverse function Theorem : for open
E ⊂ Rn, f : E → Rn, if f ∈ C ′(E), if f′(a)
is invertible for some a ∈ E, b = f(a) then :
■ There exist open sets U,V ⊂ Rn such that
a ∈ U, b ∈ V, f is one-one on U and f(U) = V

■ If g is the inverse of f in V (exists by
above point) i.e. g(f(x)) = x for x ∈ U then
g ∈ C ′(V)

■ Note : existence of inverse mapping does
not depend on f ∈ C (E) but depends only on
f′(a)’s invertibility and continuity of f′ only
near a, g ∈ C (V) depends on f ∈ C (E) only.
• A direct consequence of above theorem : if f
is as above a C ′-mapping and if f′(x) is invert-
ible for all x ∈ E then f(W) is open for every
open W ⊂ E i.e. f is an open map.
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• Implicit Function Theorem : for , f : E ⊂
Rn+m → Rn, E is a open set, f ∈ C ′(E),
f(a,b) = 0 for some (a,b) ∈ E (note here
(a) ∈ Rn, (b) ∈ Rm), A = f′(a,b) and
Ax (An+m×n restricted to n× n i.e. first n
columns the other remaining matrix is Ay. ) is
invertible then there exist open sets (a,b) ∈
U ⊂ Rn+m and (b) ∈ W ∈ Rm having the
following properties:
■ For every y ∈W there corresponds a unique
x such that (x,y) ∈ U and f(x,y) = 0
■ If x is defined to be g(y), then g ∈ C ′(W),
g(b) = a , f(g(y),y) = 0 ∀y ∈ W (this im-
plicit definition of g gives theorem its name)
and g′(b) = −A−1

x Ay.
• Interpretation if f = (f1, f2, . . , fn) then
f(x,y) = 0 is nothing but system of n equa-
tions in n+m variables i.e.

f1(x1, . . xn,y1, . .ym) = 0
...

fn(x1, . . xn,y1, . .ym) = 0

and if f(a,b) = 0 and

Ax =


∂f1
∂x1

(a,b) . . . ∂fn
∂x1

(a,b)
...

. . .
...

∂f1
∂xn

(a,b) . . . ∂fn
∂xn

(a,b)

 .

is invertible then the system can be solved for
x for given y near b and these solutions are
continuously differentiable functions of y

• Derivatives of Higher order : clearly ∂f
∂xi

is
function of x so can be differentiated again and
thus can have second order partial derivatives
like ∂2f

∂xi∂xj

• For f : E ⊂ R2 → X in variables (x,y),
∂f
∂x , ∂f

∂y and ∂2f
∂y∂x exists at every point in E, and

∂2f
∂y∂x is continuous at some point (a,b) ∈ E
then ∂2f

∂x∂y exists at (a,b) and ∂2f
∂x∂y(a,b) =

∂2f
∂y∂x(a,b).

• If ϕ(x, t) is defined for a ≤ x ≤ b, c ≤ t ≤
d, α(x) is increasing function in [a,b],∂ϕ

∂t ∈
R(α) and for every c < s < d, every ϵ > 0 there is
δ > 0 such that |∂ϕ

∂t (x, r)− ∂ϕ
∂t (x, s)| < ϵ when

ever |r− s| < δ for all x ∈ [a,b] (a weaker con-
dition that continuity of ∂ϕ

∂t in E) then

∂

∂t

∫b
a

ϕ(x, t)dα(x) =
∫b
a

∂ϕ(x, t)
∂t

dα(x).

for c ≤ t ≤ d
• Generalized Taylor’s Theorem : if f ∈
C k(E) for some open set E ⊂ Rn (i.e. for
k ∈ N C k(E) consists of functions f with do-
main E such that Djf ∈ Ck−1(E) i.e. kth order
partial derivatives are continuous.), for a ∈ E
and x ∈ Rn so close to 0 such that a+ tx ∈ E
for 0 ≤ t ≤ 1 then

f(a+ x) =
k−1∑
m=0

1
m!

∑(
∂mf

∂xi1 . .∂xim

)
(a)xi1 . . xim + r(x).

=
∑ 1

s1!. .sn!

(
∂

∑n
i=1 sif

∂xs1
1 . .∂xsn

n

)
(a)xs1

1 . . xsn
n + r(x).

where:
■ Inner sum in 1st equality is over all ordered
m-tuples (i1, . . , im) for ij ∈ {1, 2, . . ,n},
■ The sum in 2nd equality is for all ordered

tuples (s1, . . , sn) for sj ∈ {0, 1, . . ,n} such that
s1 + s2 + . . + sn ≤ k− 1,
■ And r(x) is a remainder function satisfying

lim
x→0

r(x)

|x|k−1 = 0
• Integration of functions in several variables :
■ Jacobians Jf(x): for f : E ⊂ Rn→ Rn and

is differentiable at a point x ∈ E then Jf(x) =
∂(y1,. .yn)
∂(x1,. . ,xn)

= det(f′(x)) (here (y1, . .yn) =

f(x1, . . , xn), det()is determinant of the matrix)
■ Let Ik a k-cell in Rk be defined as con-

sisting of all x = (x1, . . , xk) such that ai ≤
xi ≤ bi (i = 1, . . ,k) for fixed constants ai,bi’s
(clearly Ik is compact)
■ For f : Ik → R a real continuous func-

tion then define f = fk, fk−1(x1, . . , xk−1) =∫bk

ak
fk(x1, . . , xk)dx clearly this process can be

repeated as fk is uniformly continuous on Ik

so fk−1 is continuous on Ik−1 thus we end up
with as real number f0 after k steps define this
number as

∫
Ik f(x)dx or simply

∫
Ik f

• The order in which (x1, . . xk) are arranged
and integration is carried for a Ik in above point
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doesn’t chance the integral value so for eg inte-
gration can be first carried for any xi1 and next
for any xi2 and so on.

• Change of variables theorem : for T =

(t1, . . , tk) a 1-1 C -mapping from open set E→
Rk such that JT (x) =

∂(x1,. . ,xk)
∂(t1,. . ,tk)

̸= 0 ∀x ∈ E,
for C ⊂ T(E), f : C→ R is a continuous func-
tion and C0 = {x : f(x) ̸= 0} is compact then∫
C f(y)dy =

∫
T−1(C) f(T(x))|JT (x)|dx.

11.1 Maximum, minimum of
real valued functions

• If f is a real valued differentiable function in
an open set E ⊂ Rn and if f has a local max-
imum or minimum at x ∈ E then f′(x) = 0
(01×n)

• Gradient (∇f)(x): if f : E ⊂ Rn → R a
differentiable map, for x ∈ E define (∇f)(x) =
n∑
i=1

∂f

∂xi
(x)ei.

• Directional derivative (Duf)(x) : if f is as
above and vector u ∈ Rn be unit vector (i.e.
|u| = 1) then (Duf)(x) = lim

t→0

f(x+tu)−f(x)
t =

(∇f)(x).u
■ Now if x ix fixed and u varies then (Duf)(x)

achieves its maximum if u is in direction of
(∇f)(x) and minimum if u is in direction of
−(∇f)(x)
■ Thus given x if we move (∇f)(x) direction

from x we can get values such that f(y) ≥ f(x)
and similarly if we move in −(∇f)(x) from x

we can get f(y) ≤ f(x) thus repeatedly using
this process one can find a local minimum or
maximum of function f (Gradient Descent).
■ (∇f)(x) = 0 ⇐⇒ ∂f

∂xi
= 0 ∀ 1 ≤ i ≤

n ⇐⇒ f′(x) = 0 i.e. if x is a local minimum
or maximum of x then (∇f)(x) = 0 (converse
may not hold eg: saddle points)
• Now if for f as above ∇f(a) = 0 then by Tay-
lor’s theorem we have
f(a+x)− f(a) = 1

2
∑

i1,i2
∂2f

∂xi1∂xi2
xi1xi2 +r(x)

now if not all second order derivatives are zero

then define Hessian matrix H as [H(a)] = hji =
∂2f

∂xi∂xj
(a) (if ordering of domain variable is

{1, 2, . . ,n}) now the sum in the Taylor’s poly-
nomial can be written as H(a)xT .x = xTH(a)x

(standard representation of a quadratic form )
now if
■ xTH(a)x > 0 ∀x ̸= 0 then H(a) is positive

definite iff k× k principal minors (determinant
of principle partitioned matrix of size k× k) of
it is > 0 thus f(a+ x)− f(x) > 0 which implies
f(a) is a local minimum
■ Similarly if xtH(a)x < 0 ∀x ̸= 0 then H(a)

is negative definite iff k×k principal minors of
has (−1)k in signs then f(a) is local maxima.
■ Eg: if f : E ⊂ R2→ R with variables (x,y)

and is in C 2(E) then all 2nd order partial deriva-
tives are continuous also ∂2f

∂x∂y = ∂2f
∂y∂x at every

x ∈ E and if (∇f)(a) = 0 and not all 2nd order
partial derivatives are zero then

H(a) =

[
∂2f
∂x2 (a)

∂2f
∂x∂y(a)

∂2f
∂y∂x(x)

∂2f
∂y2 (a)

]
=

[
A B

B C

]
■ H(a) is positive definite iff A,C > 0 and
AC−B2 > 0 then f(a) is local minimum
■ H(a) is negative definite iff A,C < 0 and
AC−B2 > 0 then f(a) is a local maximum
■ And generally if AC−B2 < 0 then f(a) is

saddle point, no conclusions if AC−B2 = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 Differential forms and
Integration

• Support of a function f: is the closure of set
of all points x such that f(x) ̸= 0 (note here 0
can be a vector a linear transform or 0 - function
itself )
• k-simplex Qk : is a set consisting of points
x = (x1, . . , xk) ∈ Rk such that x1+ . . + xk ≤ 1
and xi ≥ 0
• This theories can be developed by using k-
cells but we go with k-simplex as the benefit
is the link between simplexes and topology of
sets.
• Primitive mappings G : E ⊂ Rn → Rn

and G(x) =
∑

i ̸=m xiei + g(x)em. for x =
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(xi, . . , xm, . . xn).
• Flip B : Rn → Rn such that
for x = (x1, . . , xl, . . , xm, . . , xn) B(x) =∑

i ̸=m or l xiei + xmel + xlem.
• Projection Pm : Rn → Rn for x =

(xi, . . , xm, . . xn) Pm(x) = x1e1 + . . + xmem.
• If F is a C ′-mapping from open set E ⊂
Rn → Rn, 0 ∈ E, F(0) = 0 and F′(0) is
invertible then there is a neighborhood of 0
in Rn in which F is represented as F(x) =

B1 ◦ . . ◦ Bn−1 ◦Gn. .G1(x) for Gi primitive
maps and Bi flips in Rn.
• Partition of Unity (same as in Topology)
: if K is a compact subset of Rn and {Vα} is
an open cover of K then there exist functions
ψ1, . . ,ψs ∈ C (Rn) such that :
■ 0 ≤ ψi ≤ 1 for 1 ≤ i ≤ s
■ Each ψi has support in Vα.
■ ψ1(x)+ . . +ψs(x) = 1. ∀x ∈ K.
■ This theorem can be used to translate local

behaviors of functions with compact support to
whole domain itself.
• k-surface : in an open set E ⊂ Rn is a C ′-
mapping Φ from compact set D ⊂ Rk → E ,
D is called parameter domain of Φ (usually D
is as k- cell or simplex)
• Differential form of order k ≥ 1 in E or
generally k-form in E is a function ω repre-
sented as

∑
ai1,. . ik(x)dxi1 ∧ . . ∧ dxik which

assigns to each k-surface Φ in E a number
ω(Φ) =

∫
Φω. given by∫

Φω =
∫
D

∑
ai1,. . ik(Φ(u))

∂(xi1 ,. . ,xik)
∂(u1,. . ,uk)

du.

where D is parameter domain of Φ, functions
ai1,. . ik are assumed real and continuous in E
and the jacobian is for the map (u1, . . ,uk)→
(ϕi1(u), . . ,ϕik(u))

• A 0-form is just a real continuous function, 1-
form is like adx+bdy+ . . for real continuous
functions in variables (x,y, . . )
• A k-form is of class C ′ or C ′′ if the corre-
sponding functions ai1,. . ik is of class C ′ or C ′′

• Now if dxij ∧ xij+1 is rearranged to xij+1 ∧

dxij the the corresponding jacobian changes its

sign (by −1, as columns are exchanged in de-
terminant) i.e.
if a k-form ω = ai1,. . ik(x)dxi1 ∧ . . ∧dxik and
ω̄ is obtained by interchanging some pair (one
pair) of subscripts or indexes then ω̄ = −ω.
so if any two of the indexes are same in a k-form
ω then by interchanging them we get ω = −ω.
i.e. ω = 0
• Basic k-form : for 1 ≤ i1 ≤ . . ≤ ik ≤ n

and I is the ordered tuple {i1, . . , ik} then I
is an increasing k-index and we write dxI =

dxi1 ∧ . . ∧dxik this is a basic k-form.
every k-tuple {j1, . . , jk} of distinct integers can
be converted to increasing J-index similarly
dxj1 ∧ . . ∧ dxjk = ε(j1, . . ,dxJ. where ε = ±1
depending on exchanges that lead to J
so every k-form ω can be converted to look

like ω =
∑
I

bI(x)dxI. for increasing k-indices

I and this representation is called standard rep-
resentation

• ω =
∑
I

bI(x)dxI. is a standard representa-

tion of k-form andω = 0 in E then all bI(x) = 0
for x ∈ E (note there are no repeated index in
I and each I is distinct in at-least one index so
this holds as each bI is continuous)

12.1 Operations in Differential forms

• Addition : two forms can be added iff the
have same order. i.e. one cannot add a k-form
to a p-form for k ̸= p
• Product : if two basic forms : p-form
dxI and q-form dxJ have no indices common
then product dxI ∧dxJ is a basic p+q-form
(−1)αdx[I,J] (if some index is common then
result is zero obviously)
so if ω =

∑
I bI(x)dxI and λ =

∑
J cJ(x)dxJ

then their product is defined as
ω∧ λ =

∑
I,J bI(x)cJ(x)dxI ∧dxJ.

• Differentiation : differentiation of a k-form
ω give a k+ 1-form dω given by below pro-
cess:
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for 0-form f ∈ C ′(E) a real function from

E ⊂ Rn then df =

n∑
i=1

∂f

∂xi
(x)dxi and for

ω =
∑

I bI(x)dxI its differentiation is

dω =
∑

I(dbI(x))∧dxI.

• If ω and λ are k and m-forms of class C ′ in
E then
■ d(ω∧ λ) = (dω)∧ λ+(−1)kω∧dλ.
■ If ω is of class C ′′then d(dω) = d2ω = 0
• change of variables for open set E ⊂ Rn,
T a C ′-mapping of E → V ⊂ Rm and a k-
form ω in V whose standard representation is
ω =

∑
I bI(y)dyI. (y ∈ V), if T = (t1, . . , tm),

y = (y1, . .ym) = T(x) then yi = ti(x) so ti an

be treated as a 0-form thus dti =

n∑
j=1

∂ti
∂xj

dxj

(1 ≤ i ≤ m) is a 1-form in E now we define
ωT as the k-form in E that is obtained by T in
ω given by

ωT =
∑

I bI(T(x))dti1 ∧ . . ∧dtik .

for I = {i1, . . , ik} and x ∈ E (note that dti is an
1-form with xj’s as variable for it).
• Properties of change in variable : for T and
E as above , ω and λ k and m-forms in V we
have
■ (ω+ λ)T =ωT + λT . if k =m

■ (ω∧ λ)T =ωT ∧ λT .
■ d(ωT ) = (dω)T . if ω is of class C ′ and T

is of class C ′′

• If T is a C ′ of an open set E ⊂ Rn into an
open set V ⊂ Rm, S is a C ′ of V to open
set W ⊃ Rp and ω is k-form in W so ωS

is a k-form in V and both (ωS)T and ωST

are k-forms in E (where ST = s(T(x))) i.e.

E
T−→←−−

ωST

V
S−→←−
ωS

W
k−form(kf)←−−−−→ω then

(ωS)T =ωST

12.2 Integration of Differential Forms

• For ω a k-form in an open set E ⊂ Rn, Φ a
k-surface in E with parameter domain D ⊂ Rk

and ∆ a k-surface in Rk with parameter do-
main D defined by ∆(u) = u(∀u ∈ D) (iden-

tity map of D) i.e. Φ : D → E
kf←→ ω and

∆ : D→ D
kf←→ωΦ(identity) then∫

Φω =
∫
∆ωΦ

Here clearly ωΦ is a k-form in D (use determi-
nant definition for some basic k-form to identity
J(u) )
• from above point it follows that if for

Φ
k−surface−−−−−→ E

T C ′-map
−−−−→←−

ωT

V
k-form←−−−ω then

∫
TΦω =

∫
ΦωT

(as TΦ is k-surface in E)
• Affine map : a mapping f between vector
spaces is affine if f− f(0) is linear i.e. f(x) =

f(0)+Ax (for some matrix of liner transform
A)
• standard Simplex Qk is the set in Rk with
standard basis {ei} (1 ≤ i ≤ k) of form
{u : u =

∑
αiei,

∑
αi ≤ 1,αi ≥ 0 (1 ≤ i ≤

k)}

• oriented affine k-simplex σ = [p0,p1, . . ,pk]

for points pi ∈ Rn is k-surface in Rn defined

by {p0 +

k∑
i=1

αi(pi − p0)} with parameter do-

main Qk (i.e
∑
αi ≤ 1,αi ≥ 0) and is charac-

terized by σ(0) = p0,σ(ei) = pi so we have

σ(u) = p0 +Au (u ∈ Qk)

where A ∈ L(Rk, Rn) and Aei = pi − p0 for
(1 ≤ i ≤ k)
• define

.
= a equivalence relation as σ

.
= sσ̄ if

σ = [p0,p1, . . ,pk] and σ̄ is some rearrangement
of σ i.e. σ̄ = [pi0 ,pi1 , . . ,pik ], where s = ±1
and depends on {i0, . . , ik} rearrangement i.e.
s(i0, . . , ik) =

∏
p<q sgn(iq − ip) (sgn = ±1

depending on +ve or -ve quantity, s is same
function used to determine signs in determi-
nant)
• Orientation : now σ

.
= ±σ̄ i.e. depending on

s :
■ if s = 1 σ and σ̄ have same orientation
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■ if s = −1 σ and σ̄ have opposite orientation
■ σ is positively oriented if det(A) > 0 similar

for negative orientation
■ In particular [0,e1, . . ,ek] (standard oriented

simplex) is positively oriented
■ a 0-simplex is just a point with sign attached

to it i.e. σ = ±p0 = εp0
■ integration on simplexes :
■ we define for a 0-form f and 0-simplex
σ = ±p0 = εp0 ∫

σ f = εf

■ and for k > 0, k-forms ω and k-oriented
affine simplex σ,

∫
σω as same definition of

k-form as σ is k-surface
• if for k-forms ω, k-oriented affine simplex σ
and σ̄ such that σ̄

.
= εσ then∫

σ̄ω = ε
∫
σω

• Affine Chain : an affine k-chain Γ in an open
set E ⊂ Rn is a collection of oriented affine
k-simplexes σ1, . . ,σr in E (note σi’s may not
be distinct a simplex can occur with certain
multiplicity in Γ)
■ we define integration on Γ a affine k-chain

for a k-form ω as

∫
Γω =

r∑
i=1

∫
σi

ω

■ Hence Γ = σ1 + . . + σr (here ’+’ doesnt
mean literal addition, now if σ1

.
= −σ2 means

that
∫
σ1+σ2

ω = 0 and not that σ1 + σ2 = 0
vector in E, it is just the integral interpretation)
• Boundaries :
■ consider a 2-simplex Q2 = [0,e1,e2] in R2, it

is just a closed (filled) triangle with so called
’boundary’ the segments that make these trian-
gles which in itself are 1-simplexes like [0,e1]
segment, i.e. we can write this boundary as an
affine 1-chain [0,e1] + [e1,e2] + [e2, 0] in stan-
dard form [e1,e2] + [0,e1] − [0,e2] (here ’−’ is
included so as [e2, 0]

.
= −[0,e2], this make sense

as orientations are made not to cancel the in-
tegral along each segment intersections but to

do it at only at one so the integral at intersec-
tions cycles and is not added multiple times or
removed entirely)

x

y

Q2

[e1,e2]

■ now for similar case in R3 : consider a 3-
simplex Q3 = [0,e1,e2,e3] in R3 : it forms
trigonal pyramid or a filled tetrahedron like
structure here the ’boundary’ of the figure are 4

triangular surfaces (filled or area vise) these are
just 2-simplexes like the one in xy-plane is just
[0,e1,e2], so the whole boundary can be repre-
sented as a affine chain [e1,e2,e3]− [0,e2,e3]+
[0,e1,e3] − [0,e1,e2]

0 x

y

z

[0,e1,e2]
Q3

• generalizing this we get for k ≥ 1 the bound-
ary of the oriented affine k-simplex σ =

[p0,p1, . . ,pk] is defined to be the (k− 1)-chain

∂σ =

k∑
j=0

(−1)j[p0, . . ,pj−1,pj+1, . . ,pk]

(note the sign or j depends on removal jth po-
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sition not on jth index as indexes may be rear-
ranged)
• oriented k-simplex of class C ′′ : if T is a C ′′

map of an open set E ⊂ Rn into a open set
V ⊂ Rm,σ an oriented affine k-simplex in E
then Φ = T ◦σ = Tσ is a k-surface in V with
parameter domain Qk this Φ is called oriented

k-simplex of class C ′′ i.e. Φ : Qk Tσ−→ V

• a finite collection Ψ of oriented k-simplexes
Φ1, . . ,Φr of class C ′′ in V is a defined as k-
chain of class C ′′ in V
■ if ω is k-form in V then we define∫

Ψω =

r∑
i=1

∫
Φi

ω

and we use the corresponding notation Ψ =∑
Φi

■ iif Γ =
∑
σi is an affine chain and Φi = T ◦

σi we also write Ψ = T ◦Γ or T(
∑
σi) =

∑
Tσi

■ Boundary ∂Φ of the oriented k-simplexΦ =

T ◦σ is defined to be k− 1 chain ∂Φ = T(∂σ)

■ Boundary of k-chain Ψ =
∑
Φi is defined

as k− 1-chain ∂Ψ =
∑
∂Φi

• eg: unit square I2 ⊂ R2 is union of σ1(Q
2)

and σ2(Q
2) where σ1(u) = u i.e. σ1 =

[0,e1,e2] and σ2(u) = e1 + e2 − u = i.e. σ2 =

[e1 + e2,e2,e1] so
∂σ1 = [e1,e2] − [0,e2] + [0,e1]
∂σ2 = [e2,e1] − [e1 + e2,e1] + [e1 + e2,e2] so
the sum of boundaries are ∂I2 = ∂σ1 + ∂σ2
= [0,e1] + [e1,e1 + e2] + [e1 + e2,e2] + [e2, 0]
which is the positively oriented boundary of
I2 now if Φ is a 2-surface in Rm with param-
eter domain I2 then it is same as 2-chain Φ ◦
σ1 +Φ ◦ σ2 thus ∂Φ = Φ(∂σ1) +Φ(∂σ2) =

∂Φ(∂I2) so decomposition of I2 into simplexes
is can be neglected and ∂Φ can be directly ob-
tained from ∂I2

• Stokes’ Theorem (generalized funda-
mental theorem of calculus): if Ψ is a k-chain
of class C ′′ in an open set V ⊂ Rm and ω a
k− 1-form of class C ′ in V then∫

Ψ

dω =

∫
∂Ψ

ω.

• for ω a k-form in open set E ⊂ Rk :
■ if there is a k− 1-form λ in E such that
ω = dλ then ω is called an Exact form in E
■ if ω is of class C ′ and dω = 0 then ω

Closed form in E
• clearly if ω is class C ′ and exact then it is
closed.

• a give 1-form ω =

n∑
i=1

fi(x)dxi is closed in E

iff (Djfi)(x) = (Difj)(x)∀x ∈ E
• for ω is exact k-form in E then ω = dλ and
by stokes theorem we have∫
Φω =

∫
Φ dλ =

∫
∂Φ λ for every k-chain Φ

thus
∫
Φ1
ω =

∫
Φ2
ω. if Φ1 and Φ2 have same

boundaries
in particular the integral is zero over every k-
chain in E whose boundary is zero, so integrals
of exact 1-forms in E are 0 over closed differen-
tiable curves in E

• if ω is a closed form in E then by stokes the-
orem∫
∂Φω =

∫
Φ dω = 0. for every k+ 1-chain Φ

in E

• In a convex set closed forms are exact (note
form is of class C ′ is assumed)

• now if T is 1-1 C ′′ map of E ⊂ Rn onto
U ⊂ Rn such that T−1 = S is also C ′′ and if
every closed form is exact in E or E is open con-

vex set i.e. for convex open E
T bijective, C ′′map
−−−−−−−−−→←−−−−−−−

S=T−1 C ′′map

U

then every closed form in U is exact
if E and U are as in assumption of above then
we say U is C ′′-equivalent to E.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13 Vector Analysis and Forms

• Vector Field F : E ⊂ R3 → R3 is a continu-
ous mapping in which F associates each point
x ∈ E to a vector
F1(x)e1 + F2(x)e2 + F3(x)e2 = (Fx, Fy, Fz)
(note F1 = Fx, F2 = Fy, F3 = Fz only mere no-
tation changes)
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• we can associate 1-form and 2-form to F =

F1e1 + F2e2 + F3e3 (vector field) as
■ λF = F1dx+ F2dy+ F3dz.
■ ωF = F1dy∧dz+ F2dz∧dx+ F3dx∧dy.
• Gradient : for real function u ∈ C ′(E),
E ⊂ R3

∇u = ∂u
∂x1
e1 +

∂u
∂x2
e2 +

∂u
∂x3
e3 = (∂u

∂x , ∂u
∂y , ∂u

∂z )

• for Vector field F ∈ C ′(E) :
• Divergence of F: is a real function defined by

∇.F = ∂F1
∂x1

+ ∂F2
∂x2

+
∂F3
∂x3

= ∂Fx
∂x +

∂Fy

∂y + ∂Fz
∂z

• Curl of F: is again a vector field given by the
determinant

∇× F =

∣∣∣∣∣∣
e1 e2 e3
∂

∂x1

∂
∂x2

∂
∂x3

F1 F2 F3

∣∣∣∣∣∣ =
∣∣∣∣∣∣
e1 e2 e3
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣
where determinant is expanded from 1st row,
∂

∂xi
Fj =

∂Fj

∂xi
or ∂

∂xFz = ∂Fz
∂x and like wise

• basic properties (can be derived by associat-
ing appropriate forms to vector fields)
■ if F =∇U then ∇× F = 0
■ if F =∇×G then ∇.F = 0 further if
■ if E is convex or C ′′-equivalent to a convex

set then converse of above point holds i.e.
■ if ∇× F = 0 then F = ∇U for some real

function U in E
■ if ∇.F = 0 then F = ∇×G for some vector

field G in E

13.1 Consequences of Stokes’ Theorem

• Greens Theorem : for open E ⊂ R2 and
α,β ∈ C ′(E), and for a closed set Ω of E with
positively oriented boundary ∂Ω then∫

∂Ω

αdx+βdy =

∫
Ω

(
∂β

∂x
−
∂α

∂y

)
dA

where dA = dx∧dy

(use αdx+βdy as 1-form)
• Area element in R3 for Φ a 2-surface in R3

of class C ′ with parameter domain D ⊂ R2

associate each point (u, v) vector

N(u, v) = ∂(y,z)
∂(u,v)e1 +

∂(z,x)
∂(u,v)e2 +

∂(x,y)
∂(u,v)e3

for Jacobians defined on (x,y, z) =Φ(u, v)

■ if f is continuous on Φ(D) then the area
integral of f over Φ is defined to be

∫
Φ fdA =

∫
D f(Φ(u, v))|N(u, v)|dudv

this makes sense as N is perpendicular to tan-
gent planes and |N| is the area of small paral-
lelogram below N on surface Φ (all when Φ is
considered locally an affine map).

• Integral of 1-forms in R3 : if γ is a C ′-curve
in an open set E ⊂ R3 with parameter interval
[0, 1], F a vector field in E then for tangent vec-
tor γ′(u) = γ′

1(u)e1 + γ
′
2(u)e2 + γ

′
3(u)e3 =

|γ′(u)|t(u) where t(u) is defined as unit tan-
gent vector in γ′(u) direction, we have

∫
γ
λF =

3∑
i=1

∫1
0
Fi(γ(u))γ

′(u)du

(from definition of 1-form)

=

∫1
0
F(γ(u)).γ′(u)du

=

∫1
0
(F.t)ds

where ds = |γ′(u)|du is the element of arc
length along γ

• Integral of 2-forms in R3 : if Φ is a 2-surface
of class C ′ in an open set E ⊂ R3 with pa-
rameter domain D ⊂ R2, F a vector field in E
then
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∫
Φ
ωF =

∫
Φ
F1dy∧dz+ F2dz∧dx+ F3dx∧dy

(from definition of 1-form)

=

∫
D

[
F1 ◦Φ

∂(y, z)
∂(u, v)

+ F2◦Φ
∂(z, x)
∂(u, v)

+F3 ◦Φ
∂(x,y)
∂(u, v)

]
dudv

=

∫
D
F(Φ(u, v)).N(u, v)dudv

=

∫
D
F(Φ(u, v)).n(u, v)|N(u, v)|dudv

=

∫
D
(F.n)dA

where n(u, v) is the unit vector along N(u, v)
and dA = |N(u, v)|dudv is the area element on
Φ

• Stokes Curl Theorem : for F vector field of
class C ′ in open set E ⊂ R3 and if Φ is 2-
surface of class C ′′ in E, then∫

Φ

(∇× F).ndA =

∫
∂Φ

F.tds.

(direct consequence of Stokes’ Theorem)

• Gauss Divergence Theorem : for F vector
field of class C ′ in open set E ⊂ R3 and if
closed Ω ⊂ E has a positive oriented boundary
∂Ω then ∫

Ω

∇.FdV =

∫
∂Ω

(F.n)dA.

(direct consequence of Stokes’ Theorem)

• Generalized Integration by parts :
■ Integration by parts : if F,G are differen-

tiable functions on [a,b], F′ = f ∈ R and
G′ = g ∈ R then

∫b
a
F(x)g(x)dx = F(b)G(b)− F(a)F(a)

−

∫b
a
f(x)G(x)dx

■ Generalized version : for open set E ⊂
Rn,k-form ω of class C ′(E), f real function of
class C ′(E) and Φ a k-surface of class C ′′ in E
then ∫

Φ

fdω =

∫
∂Φ

fω−

∫
Φ

(df)∧ω

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14 Lebesgue Integration
and measures

• ring (not the same as abstract but is relevant)
: a family of sets R is a ring if A ∈R, B ∈R

implies
A∪B ∈R, A−B ∈R.

(note A∩B = A−(A−B) so A∩B ∈R)
• σ-ring : R is a σ-ring if it a ring with prop-
erty that if An ∈R then

∪∞
i=1An ∈R.

(note ∩∞
i=1An ∈R.)

• Set function ϕ : R → R +∞ i.e. ϕ maps
sets in a ring to extended real line
■ ϕ is additive if A∩B = 0(empty set) implies

ϕ(A∪B) = ϕ(A)+ϕ(B).

■ ϕ is countably additive if Ai ∩Aj = 0 im-
plies

ϕ(∪∞
i=1Ai) =

∞∑
i=1

ϕ(Ai).

• properties of additive set function ϕ :
■ ϕ(0) = 0.
■ ϕ(A1 ∪ . . ∪An) = ϕ(A1) + . . +ϕ(An).

for Ai ∩Aj = 0(i ̸= j)
■ ϕ(A1 ∪ A2) + ϕ(A1 ∩ A2) = ϕ(A1) +

ϕ(A2).
■ if ϕ(A) ≥ 0∀A ∈ R then we say ϕ is

nonnegative, now for such ϕ (also additive) if
A1 ⊂ A2 then

ϕ(A1) ≤ ϕ(A2).
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■ if ϕ is non-negative, additive and B ⊂ A ∈
R(ϕ(B) <∞) then

ϕ(A−B) = ϕ(A)−ϕ(B).

• if ϕ is countably additive on ring R, An ∈
R, A1 ⊂ A2 ⊂ . . ,A ∈ R such that A =

∪∞
i=1Ai then

ϕ(An)→ ϕ(A).

14.1 Formation of Lebesgue measures on
Rp

• Interval in Rp: is just a bounded k-cell or
{(x1, . . , xn) : ai ≤ xi ≤ bi, {ai,bi} ⊂ R} (note
ai,bi ̸= ±∞) and in any ≤ is replaced with < is
also an intrval and the case ai = bi is ruled out
• Elementary set : a set which is the union of
finite intervals
• example: define m(I) for interval I ⊂ Rp as
m(I) =

∏p
i=1(bi −ai) then for E family of all

Elementary subset of Rp we have :
■ E is ring but not σ-ring (as countale inter-

section of closed Intervals may be finite sets)
■ ifA ∈ E thenA is the finite union of disjoint

Intervals
■ m is a non-negative additive set function on

E
( clearly if p = 1, 2, 3 then m is just length, area
, volume)
• A non-negative additive set function ϕ on E
is regular if for each ϵ > 0 ,A ∈ E ∃F,G ∈ E
such that F closed , G open , F ⊂ A ⊂ G and

ϕ(G)− ϵ ≤ ϕ(A) ≤ ϕ(F)+ ϵ.

i.e. ϕ(A) can be taken as a limit of ϕ in open
superset or closed subset of A.
• m is regular
• outer measure : µ∗ for a additive, nonnega-
tive, regular and finite on E in Rp, for countable
covering of E ⊂ Rp by open Elementary sets
An i.e. E ⊂ ∪∞

n=1An. then define

µ∗(E) = inf
∞∑
n=1

µ(An).

(one similarly define inner measure as supre-
mum of disjoint closed elementary subsets con-
tained in A and can construct Lebesgue mea-
sure also but the measure obtained is same for
a given µ)
• properties of outer measure :
■ for every A ∈ E , µ∗(A) = µ(A) i.e. outer

measure is just an extension of µ

■ if E = ∪∞
1 En then µ∗(E) ≤

∞∑
1

µ∗(En) i.e.

µ∗ is sub-additive.
• Symmetric difference S(A,B) : A,B ∈
Rp S(A,B) = (A−B)∪ (B−A)

• define d(A,B) = µ∗(S(A,B)) and An→ A

if lim
n→∞d(A,An) = 0 for sequence of elemen-

tary sets {An}.
• MF(µ) contains sets A (finitely µ measur-
able) if there exist elementary set sequence {An}

such that An→ A (i.e. lim
n→∞d(A,An) = 0 )

• M(µ) contains all sets that are countable
union of finitely µ-measurable sets.
• Measure theorem on Euclidean space :
M(µ) is a σ-ring and µ∗ is countable additive.
• such extended set function (nonnegative,
countably additive, regular and finite) on σ-
ring is called as measure
• Lebesgue measurem is extension of set func-
tion m (defined earlier) on σ-ring M(m) in
Rp.
• properties of measures :
■ if A is open or closed in Rpthen A ∈M(µ)

(as Rp has a countable base consisting of only
open intervals)
■ if A ∈M(µ) and for every ϵ > 0 there exist

sets : closed F and openG such that F ⊂ A ⊂ G
and

µ(G−A) < ϵ, µ(F−A) < ϵ.

■ Borel sets : sets which are countable union,
intersection or complement union or intersec-
tion of open sets, clearly the collection B of all
Borel sets in Rp is the smallest σ-ring contain-
ing all open sets and B ⊂M(µ)
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• relevance to Riemann integration
■ if A ∈M(µ) and for every ϵ > 0 there exist

Borel sets F,G such that F ⊂ A ⊂ G and

µ(G−A) = µ(F−A) = 0.

■ Thus A ∈ M(µ) then A = F ∪ (A− F)

where F is Borel set and A− F is a set of mea-
sure zero
■ for a given µ Borel sets are same but sets of

measure zero may differ

14.2 Measure Space

• X is a measure space if there exist a σ-ring
M of subsets of X (which are called measurable
sets) and a nonnegative countably additive set
function µ (called measure) defined on M

• Measureable Function : a function f defined
on measure space X to extended Reals such that
the sets {x : f(x) > a} is measurable for every
real a
• this definition is equivalent to

{x : f(x) ≥ a}.
{x : f(x) < a}.
{x : f(x) ≤ a}.

• if f,g are measurable on X then :
■ |f| is measurable
■ max(f,g), min(f,g) are measurable
■ f = f+ − f− where f+ = max(f, 0), f− =

min(f, 0) ≥ 0 are measurable.
■ if {fn} is sequence of measurable functions

then h(x) = sup fn(x)(1, . . ,n) and k(x) =

lim supn→∞ fn(x) are Measureable
• If F is continuous function on R2→ R , and
f,g are measurable then

h(x) = F(f(x),g(x)).

is measurable. ( in particulat f+g(x), f(x)g(x)
are measurable)
• Characteristic function

KE(x) =

{
1 (x ∈ E)
0 (x /∈ E)

is measurable iff E is measurable

• Simple function s : a functions with finite
range
if range of s consists of distinct numbers
c1, c2, . . , cn,if Ei = {xi : s(xi) = ci} then

s =

∞∑
i=1

ciKEi
.

and s is measurable if each Ei is measurable.
• for every real function f on measure space X
there exist as sequence of simple functions {sn}

such that sn(x)→ f(x) as n→∞
14.3 Lebesgue Integration

• for a given measure µ and measurable simple

function s =
∞∑
i=1

ciKEi
we define

∫
E sdµ =

∞∑
i=1

ciµ(E∩ Ei).

• if f is nonnegative measurable function then
for 0 ≥ s ≥ f (s simple) define∫

E fdµ = sup
∫
E sdµ.

• if f is in general (positive aswell as negative)
measurable then f = f+ − f− and define∫

E fdµ =
∫
E f

+dµ−
∫
E f

−dµ.

• we say a measurable function f is Lebesgue
integrable on E or f ∈ L (µ) on E if its
Lebesgue integral is finite on E
• properties of Lebesgue integrable Functions
■ if a ≤ f(x) ≤ b on E and µ(E) <∞ then

aµ(E) ≤
∫
E fdµ ≤ bµ(E).

■ if f,g ∈ L (µ) on E and f ≤ g on E then∫
E fdµ ≤

∫
E gdµ.

■ for any real (constant) c if f ∈ L (µ) on E
then cf ∈ L (E) and

∫
E cfdµ = c

∫
E fdµ

■ if µ(E) = 0 then for measurable f,
∫
E fdµ =

0.
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■ if f ∈ L (µ) on E and measurable A ⊂ E
then f ∈ L (µ) on A
• for measurable, nonnegative f on X and a
measurable set A ⊂ X define ϕ(A) =

∫
A fdµ

thenϕ is countably additive on measurable sets
i.e. for a sequence {An} of measurable sets∫

A1∪A2∪. . fdµ =
∫
A1
fdµ+

∫
A2
fdµ.

• if A,B ∈M,B ⊂ A and µ(A−B) = 0 then∫
A fdµ =

∫
B fdµ.

• almost everywhere : excluding sets of mea-
sure zero i.e.
eg: if f = g almost everywhere if {x : f(x) ̸=
g(x)}∩ E has measure zero
• if f ∈ L (µ) on E then |f| ∈ L )(µ) on E and∣∣∫

E fdµ
∣∣ ≤ ∫

E |f|dµ.

• if f measurable on E, |f| ≤ g and g ∈ L (µ)

on E then f ∈ L (µ) on E
• Lebesgue monotone convergence theorem :
for E ∈M and {fn} a sequence of measurable
functions such that 0 ≤ f1(x) ≤ f2(x). . on E,
if fn→ f as n→∞ on E then as n→∞∫

E fndµ→
∫
E fdµ.

• Consequences
■ if f1, f2 ∈ L (µ) on E ∈ M then f1 + f2 ∈

L (µ)on E
■ if {fn} is a sequence of nonnegative measur-

able functions on E ∈M and f(x) =
∑
fn(x)

on E then

∫
E fdµ =

∑∫
E fndµ.

• Fatou’s Theorem : if {fn} is a sequence of
nonnegative measurable functions on E ∈M

and f(x) = lim infn→∞ fn(x) on E then∫
E fdµ ≤ lim infn→∞ ∫

E fndµ.

• Lebesgue Dominated convergence Theorem
: if {fn} is a sequence of nonnegative measur-
able functions on E ∈ M, fn(x) → f(x) on
E and if there exist g ∈ L (µ) on E such that
|fn(x)| ≤ g(x)∀n on E then

lim
n→∞

∫
E fndµ =

∫
E fdµ.

• on Interval [a,b] if f ∈ R then f ∈ L(m) on
the interval and∫

[a,b] fdm =
∫b
a fdx.

(note m is the Lebesgue measure)
• most theorems like fundamental theorem of
calculus hold for Lebesgue integration with
measure m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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