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if a matrix is in triangular form one can easy
calculate its inverse by making note that in-
verse of a triangular matrix is of the same
triangular type i.e. for example A is upper
triangular non-singular matrix then A" is
also an upper triangular matrix.

B From previous point we have if any non
singular matrix A can be written as A = LU
for lower triangular L and upper triangular
U then A" = U 'L™" thus inverse can be
easily calculated.

B This Decomposition may not be unique
B To decompose in a easy way we take di-
agonal elements of U or L as 1. (only in one
of the factors) and compute the coefficients
by writing A = LU and solving some equa-
tions in a linear order.

B Now in addition if principal minors (Ay)
of matrix A are not zero then the above de-
composition is unique.

LU Decomposition

if A = [ay;] be a n x n non singular matrix
then for linear system Ax = b then we can
use elementary operations:

exchange of rows, addition of rows and mul-
tiplication by a non zero constant to a row
to transform the linear systemA’x = b’ such
that a;, # o and a{, = o for i < 1 and con-
tinuing this process to get for i = 2,3,..,n
we get a system Gx = b where G is upper
triangular and has same solutions as origi-
nal system.

Gauss elimination

Gauss-Jordan method

this method is similar to Gauss elimination
but Ax = b for non singular square A is
transformed to Gyx = b where Gj is diag-
onal i.e. for A = [ay;], ai; is made non zero
and all other aij is made zero with elemen-
tary transformations.

General Iterative methods

B iterative methods can be generalised as
x(k) = Tx(k=1) 4 ¢

B this method converges to a unique so-
lution for any initial approximation x(0) iff
(=) p(T) < 1 where p(T) = max(|A]) for A
eigenvalue of T.

Jacobi’s Method

B if Ax = b is a system such that for n-
square A = [ai;] we have aj; # o (if not is
made by rearranging rows or equations if possible)
then for x = [x;i]7 we can transform x; =

n
Z(—aijxj /aii) +bi/aii| from which we

j=1

i#A
get the iterative method i.e. x(°) is initial ap-

proximation and for kt" approximation x ()
we have the iteration using x*~*) given by

B Now for matrix representation if A =
D + L+ U where D is diagonal L is lower
diagonal with diagonal entries o and U is




upper diagonal with diagonal entries o then
for Jacobi method we have

(D+L+UWUx=Db
= Dx=—(L+U)x+b.
= x=-D""L+U)x+D 'b.
ie. x® =—D(L+ux 1 +D .

sowe get T = —D *(L+U),c = D™ 'b for
general form.

Gauss-Seidel Method

B This is similar to Gauss method but here

we use the previous k'™ iterated variables

kth (k)

one i.e. for in x;  iteration

we can replace xj(kﬂ) for j < i with xj{k) as

these are already found i.e.
(k) _

for the next

1 n
1 (k) (k—1)
— | = E ayj X)’ = E ai]-xj + by
aii — L
)=1 J=1+1

B for matrix representation we rewrite the
iterative formula as

i n
k k—

Z ain)g ) = — Z aijx§ 1) +bi

j=1

j=i+1
similar to Jacobi’s case if A = D + L+ U by
above formula we have

(D+L)x™ = —ux1 4 b,

sowegetT =—(D+L)""U,c=(D+L) "b.

for system Ax=b , A=D+L+U

B if A is strictly diagonal then both Jacobi
and Gauss-Seidel methods converge for ev-
ery initial approximation x(©).

B Gauss-Seidel method is twice as fast as
Jacobi’s method for convergence

now from general iterative methods we have
B sufficient condition for convergence of Ja-

cobi’s method is that
IT=-D Y (L+W)J| <1 ie p(T) <1

B similarly sufficient condition for conver-
gence of Gauss-Seidel method is that

ITI=1—(D+L)""Ull < 1.

B Both these method also converge if A =
lai;] is such that

n
Z lay;| < laiil for i =1,2,..,n and strict in-

j=1
j#t
equality holds for at least one i.
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