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if a matrix is in triangular form one can easy
calculate its inverse by making note that in-
verse of a triangular matrix is of the same
triangular type i.e. for example A is upper
triangular non-singular matrix then A−1 is
also an upper triangular matrix.

LU Decomposition

■ From previous point we have if any non
singular matrix A can be written as A = LU

for lower triangular L and upper triangular
U then A−1 = U−1L−1 thus inverse can be
easily calculated.
■ This Decomposition may not be unique
■ To decompose in a easy way we take di-
agonal elements of U or L as 1. (only in one
of the factors) and compute the coefficients
by writing A = LU and solving some equa-
tions in a linear order.
■ Now in addition if principal minors (∆k)
of matrix A are not zero then the above de-
composition is unique.

Gauss elimination
if A = [aij] be a n× n non singular matrix
then for linear system Ax = b then we can
use elementary operations:
exchange of rows, addition of rows and mul-
tiplication by a non zero constant to a row
to transform the linear systemA ′x = b ′ such
that a ′

11
̸= 0 and a ′

i1
= 0 for i < 1 and con-

tinuing this process to get for i = 2, 3, . . ,n
we get a system Gx = b̃ where G is upper
triangular and has same solutions as origi-
nal system.

Gauss-Jordan method
this method is similar to Gauss elimination
but Ax = b for non singular square A is
transformed to GJx = b̃ where GJ is diag-
onal i.e. for A = [aij], aii is made non zero
and all other aij is made zero with elemen-
tary transformations.

General Iterative methods
■ iterative methods can be generalised as
x(k) = Tx(k−1) + c

■ this method converges to a unique so-
lution for any initial approximation x(0) iff
( ⇐⇒ ) ρ(T) < 1 where ρ(T) = max(|λ|) for λ

eigenvalue of T .

Jacobi’s Method
■ if Ax = b is a system such that for n-
square A = [aij] we have aii ̸= 0 (if not is
made by rearranging rows or equations if possible)
then for x = [xi]

T we can transform xi = n∑
j=1

j̸=i

(−aijxj/aii) + bi/aii

 from which we

get the iterative method i.e. x(0) is initial ap-
proximation and for kth approximation x(k)

we have the iteration using x(k−1) given by

x
(k)
i =

1

aii

 n∑
j=1

j̸=i

(−aijx
(k−1)
j ) + bi

 .

■ Now for matrix representation if A =
D + L + U where D is diagonal L is lower
diagonal with diagonal entries 0 and U is
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upper diagonal with diagonal entries 0 then
for Jacobi method we have

(D+ L+U)x = b

=⇒ Dx = −(L+U)x+ b.
=⇒ x = −D−1(L+U)x+D−1b.

i.e. x(k) = −D−1(L+U)x(k−1) +D−1b.

so we get T = −D−1(L+U), c = D−1b for
general form.

Gauss-Seidel Method
■ This is similar to Gauss method but here
we use the previous kth iterated variables
for the next kth one i.e. for in x

(k)
i iteration

we can replace x
(k−1)
j for j < i with x

(k)
j as

these are already found i.e.
x
(k)
i =

1

aii

− i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j + bi

 .

■ for matrix representation we rewrite the
iterative formula as
i∑

j=1

aijx
(k)
j = −

n∑
j=i+1

aijx
(k−1)
j + bi

similar to Jacobi’s case if A = D+ L+U by
above formula we have

(D+ L)x(k) = −Ux(k−1) + b.

i.e.x(k) = −(D+ L)−1Ux(k−1) + (D+ L)−1b.

so we get T = −(D+L)−1U, c = (D+L)−1b.

for system Ax = b , A = D+ L+U

■ if A is strictly diagonal then both Jacobi
and Gauss-Seidel methods converge for ev-
ery initial approximation x(0).
■ Gauss-Seidel method is twice as fast as
Jacobi’s method for convergence
now from general iterative methods we have
■ sufficient condition for convergence of Ja-

cobi’s method is that

||T || = ||−D−1(L+U)|| < 1 i.e. ρ(T) < 1.

■ similarly sufficient condition for conver-
gence of Gauss-Seidel method is that

||T || = ||− (D+ L)−1U|| < 1.

■ Both these method also converge if A =
[aij] is such that
n∑
j=1

j̸=i

|aij| ⩽ |aii| for i = 1, 2, . . ,n and strict in-

equality holds for at least one i.

0 References

[1] Burden R. L., Faires D. J., Burden A.
M.: Numerical Analysis, Cengage Learn-
ing,(2016).

[2] S. S. Sastry: Introductory Methods of Nu-
merical Analysis, PHI Learning,(2012).

2


