Introductory Number Theory

Yashas.N

2

Contents

1	Preliminaries	1
2	Divisibility in \mathbb{Z}^+	1
3	Congruences	2
3.1	Linear congruences	2
4	Primes: Properties, Theorems and	
	Conjectures.	3
4.1	Divisibility by Small primes	4
5	Number theoretic functions	4
6	More on Congruences	6
7	Primitive roots	6
7.1	existence of primitive roots	7
-	Indices	7
, 7.3		8
1.2		0

o Symbols used

$$\begin{split} {}_{s}|_{t} & \rightarrow \text{ such that.} \\ \text{iff } & \rightarrow \text{ if and only if.} \\ a|b & \rightarrow a \text{ divides } b \text{ .} \\ \exists! & \rightarrow \text{ there exists unique.} \end{split}$$

1PreliminariesPrinciple of Mathematical inductionFirst principle : If S is a set of positive integers (\mathbb{Z}^+) with the following :• $1 \in S$.• $k \in S \implies k+1 \in S$.• $k \in S \implies k+1 \in S$.then S is the set of positive integers.Second principle (strong induction): if $S \subseteq \mathbb{Z}^+_{s|t}$ • $1 \in S$ and• $1, 2, \dots, k \in S \implies k+1 \in S$ then $S = \mathbb{Z}^+$.

Divisibility in \mathbb{Z}^+

■ for every $a, b \in \mathbb{Z}, \exists (\text{ unique })q \in \mathbb{Z}, r \in \mathbb{Z}^+ |_s|_t a = qb + r \text{ and } o \ge r \ge |b|.$ ■ a|b (a divides b) iff a = qb for some (unique) $q \in \mathbb{Z}$ ■ a|b then $|a| \le |b|$.

let d = gcd(a, b) denote greatest common divisor of a and b then

 $\blacksquare \exists !x, y \in \mathbb{Z}_{s}|_{t} d = xa + yb$

■ d = least element of S = { $xa + yb|xa + yb > o, x, y \in \mathbb{Z}$ }.

■ set { $xa + yb|x, y \in \mathbb{Z}$ } contains precisely multiples of d.

If a|c and b|c then ab|c if gcd(a, b) = 1.

Euclid's lemma : a|bc and gcd(a, b) = 1then a|c.

• a and b are relatively primes if gcd(a,b) = 1 iff 1 = xa + yb for some $x, y \in \mathbb{Z}$.

■ if a = qb + r then gcd(a, b) = gcd(b, r). thus gcd(a, b) is the last remainder in the euclidean algorithm ■ gcd(ka, kb) = |k| gcd(a, b) (here $k \neq o$) thus prime factorisation of a ad b comes into play here. ■ if d = gcd(a, b) then there are relatively prime integers r, s such that a = rd and b = sd. ■ gcd(a, bc) = 1 iff gcd(a, b) = 1 and gcd(a, c) = 1. ■ $gcd(a, n) = gcd(kn \pm a, n)$ for all $k \in \mathbb{Z}^+$. ■ if gcd(a, b) = d then there exist $a_1, b_1 s|_t a = a_1 d, b = b_1 d$ and $gcd(a_1, b_1) =$ 1.

let l = lcm(a, b) denote the lowest common multiple of a and b. then \blacksquare gcd(a, b) lcm(a, b) = ab. \blacksquare lcm(a, b) = ab iff gcd(a, b) = 1.

Diophantine equations

Equations in one or more variable that is to be solved in integers is called a Diophantine equation.

■ The linear diophantine equation ax + by = c for given $a, b, c \in \mathbb{Z}$ has a solution iff gcd(a, b)|c. (if so then as $d|c \implies c = dt = t(x_0a + y_0b) \implies x = x_0t, y = y_0t$.)

■ all solutions of the above linear diophantine equation is of form

 $x = x_o + \left(\tfrac{b}{d} \right) t \quad y = y_o + \left(\tfrac{a}{d} \right) t.$

for some solution x_0 , y_0 and arbitrary $t \in \mathbb{Z}$ i.e. there are infinitely many solutions for the linear diophatine equation ax + by = c.

3 Congruences

 $\mathfrak{a} \equiv \mathfrak{b} \pmod{\mathfrak{n}}$

is defined as true if n|(a - b) (note $a, b \in Z$ and $1 < n \in \mathbb{Z}^+$) otherwise $a \not\equiv b \pmod{n}$.

properties

 $\blacksquare \equiv \mod n \text{ is a equivalence relation on } \mathbb{Z}$ for any n > 1. if $a \equiv b \pmod{n}$ and $c \equiv b \pmod{n}$ then $\blacksquare a + c \equiv b + d \pmod{n}.$ \blacksquare ac \equiv bd (mod n). $\blacksquare a^k \equiv b^k \pmod{n} \text{ for } k \in \mathbb{Z}^+.$ \blacksquare it is not true that $ca \equiv cb \pmod{n} \implies$ $a \equiv b \pmod{n}$. $\blacksquare ca \equiv cb \pmod{n} \implies a \equiv b \pmod{n/d}$ where d = gcd(c, n). If $a \equiv b \pmod{n}$ and m|n then $a \equiv b$ (mod m). If gcd(n,m) = 1, $a \equiv b \pmod{n}$ and $a \equiv b \pmod{m}$ then $a \equiv b \pmod{mn}$ If $a \equiv b \pmod{n}$ and d|n, a, b then $a/d \equiv$ $b/d \pmod{n}/d$. $\blacksquare \star$ if $a \equiv b \pmod{n}$ then gcd(a, n) =gcd(b,n). If $ac \equiv bd \pmod{n}$ and $b \equiv d \pmod{n}$ with gcd(b, n) = 1 then $a \equiv c \pmod{n}$.

3.1 Linear congruences

equation $ax \equiv b \pmod{n}$ has a solution iff d|b for d = gcd(a, n). if so the this equation has d mutually incongruent solutions mod n. (use : this is same as solutions for diophantine equation ax - ny = b).

from above point $ax \equiv b \pmod{n}$. has a unique solution mod n iff gcd(a, n) = 1.

system of linear congruence equations $a_1 x \equiv b_1 \pmod{m_1},$ $a_2 x \equiv b_2 \pmod{m_2},$ \vdots $a_k x \equiv b_k \pmod{m_k}.$ where m'_i s are relatively prime pairs is equivalent to solving system

$$\begin{aligned} x &\equiv c_1 \pmod{n_1}, \\ x &\equiv c_2 \pmod{n_2}, \\ &\vdots \\ x &\equiv c_k \pmod{n_k}. \end{aligned}$$

where $n_i = m_i/d_i$, $d_i = gcd(a_i, m_i)$ and $c_i = (b_i/d_i)(a'_i)$ for $a'_i(a_i/d_i) \equiv 1$ (mod n_i) (use system is solvable iff each equation is solvable i.e. $d_i|b_i$, $gcd(a_i/d_i, n_i) = 1$ so $\exists!a'_i s|_t a'_i a_i/d_i \equiv 1 \pmod{n_i}$.)

Chinese Remainder Theorem

for $n_i \in \mathbb{Z}^+$ and $gcd(n_i, n_j) = 1$ for $i \neq j$ the system of linear congruence equations

$$\begin{split} x &\equiv a_1 \pmod{n_1}, \\ x &\equiv a_2 \pmod{n_2}, \\ &\vdots \\ x &\equiv a_k \pmod{n_k}. \end{split}$$

has a simultaneous solution. This solution is unique upto mod $n = n_1 n_2 ... n_k$. And this solution is given by $x = a_1 N_1 x_1 + a_2 N_2 x_2 ... a_k N_k x_k$ where $N_i = n/n_i = n_1 ... n_{i-1} n_{i+1} ... n_k$, for $N_i x_i \equiv 1 \pmod{n_i}$.

The system of linear congruences

 $ax + by \equiv r \pmod{n}$ $cx + dy \equiv s \pmod{n}$

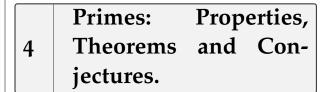
has a unique solution mod n whenever gcd(ad - bc, n) = 1.

Fermat's Little Theorem

for a prime p and p /a we have $a^{p-1} \equiv 1 \pmod{p}$. (use as $\{a, 2a, \dots, (p-1)a\}$ forms complete congruence residue of p so a.2a. $(p-1)a \equiv 1.2.(p-1) \pmod{p} \implies (p-1)!a^{p-1} \equiv (p-1)! \pmod{p}$.)

Wilson's Theorem

 $\begin{array}{l} p \text{ is a prime iff } p|(p-1)!+1 \text{ i.e. } (p-1)! \equiv \\ -1 \ (mod \ p) \ (use \ for \ 1 \ < \ a \ < \ p-1, a \ /|p \ so \\ \exists !a' \in \{2,3, \ldots p-2\}_s|_t \ aa' \equiv 1 \ (mod \ p) \ so \ 2.3 \ldots p-2 = (p-2)! \equiv 1 \ (mod \ p).) \end{array}$



let $p, q \in \mathbb{Z}^+$ be primes (p > 1 is prime in \mathbb{Z}^+ if only divisors of p are 1 and p.) and $\forall ab \in \mathbb{Z}$.then

$$\square p|ab \implies p|a \text{ or } p|b \blacksquare p|a^k \implies p|a \text{ or } p|b \blacksquare p|a^k \implies p|a \text{ or } p|a^k.$$

Fundamental Theorem of Arithmetic Every positive integer n > 1 is a prime or product of primes such that its representation of the form

$$\mathfrak{n} = \mathfrak{p}_1^{\mathfrak{l}_1} \mathfrak{p}_2^{\mathfrak{l}_2} \dots \mathfrak{p}_k^{\mathfrak{l}_k}.$$

for primes $p_1 < p_2 < \ldots < p_k$ and $l_i \in \mathbb{Z}^+$ is unique.

■ there exists prime p appearing in prime factorization of a i.e. $a = pm_s|_t p \leq \sqrt{a}$. ■ if a > 1 is not divisible by any prime

 $p \leq \sqrt{a}$ then a is a prime (simple restatement of above point.)

■ There are an Infinite number of primes in \mathbb{Z}^+

let p_n denote the n^{th} prime in ascending order of primes then $p_n < 2^n$.

■ for n > 2 there exists a prime such that n (use: if not then <math>n! - 1 is not prime and all its prime divisors are $p \le n \implies p|n!$ thus $p \le n$ leading to contradiction p|1.)

■ **Goldbach conjecture** : every even integer is sum of two numbers that are either prime or 1.

■ *twin prime* question : are there infinitely many twin prime pairs (primes with a gap of 2 integers between them).

■ for $n \in \mathbb{Z}^+$ there are n consecutive integers all of them composite ((n+1)!+2, (n+1)!+3, ..., (n+1)!+(n+1)).

Dirichlet theorem

If a and b are relatively prime positive integers, then the arithmetic progression a, a + b, a + 2b, a + 3b, ... contains infinitely many primes.

Fermat Kraitchik Factorisation method

■ for odd integer n if $n = x^2 - y^2$ then clearly n = (x + y)(x - y) or if n is composite i.e. n = ab then $n = (\frac{a+b}{2})^2 - (\frac{a-b}{2})^2$ holds as both a, b are odd.

■ So rearranging we get $x^2 - n = y^2$ now search for smallest integers $k_s|_t k^2 \ge n$ and look at numbers $k^2 - n$, $(k + 1)^2 - n$, $(k + 2)^2 - n$,... until a value $m \ge \sqrt{n}$ is found making $m^2 - n$ a square to give a factorisation of n = ml.

 \blacksquare this process cannot go indefinitely as $(\frac{n+1}{2})^2-n=(\frac{n-1}{2})^2$ gives trivial factorisation n=n.1 .

• thus this process terminates for some m and n is composite if not then clearly n is a prime.

4.1 Divisibility by Small primes

let $a = a_m 10^m + a_{m-1}10m - 1 + ... + a_110 + a_0$ be the decimal representation of a then

2|a iff unit digits of $a = a_0 = 2, 4, 8$ or 0.

3,9|a iff 3,9|a_m + a_{m-1}.. + a₁ + a₀ i.e. iff sum of the digits in decimal representation of a is divisible by 3 or 9 (use $10 \equiv 1 \pmod{9} \equiv$ 1 (mod 3).)

4|a iff 4|10a₁ + a₀ i.e. iff 4 divides the number formed by tens and units digits of a. (use $10^{k} \equiv 0 \pmod{4}$) if $k \ge 2$).

 $5|a \text{ iff } a_0 = 0 \text{ or } 5.$

 $11|a \text{ iff } 11|a_0 - a_1 + a_2.. + (-1)^m a_m \text{ (use 10)} = -1 \pmod{11}.$

7, 11, 13|a iff 7, 11, 13|[($100a_2 + 10a_1 + a_0$) -($100a_5 + 10a_4 + a_3$) + ($100a_8 + 10a_7 + a_6$)..] i.e. 7, 11, 13 divides a iff alternating sum of 3 digits taken at a time in digits of a is divisible by 7, 11, 13 (use 7.11.13 = 1001 and if n is even $10^{3n} = 1, 10^{3n+1} = 10, 10^{3n+2} = 100$ (mod 1001). of if n is odd $10^{3n} = -1, 10^{3n+1} = -10, 10^{3n+2} = -100$ (mod 1001)).

5 Number theoretic functions

Any function whose domain is the set of positive integers (\mathbb{Z}^+) is called a number theoretic function or arithmetic function.

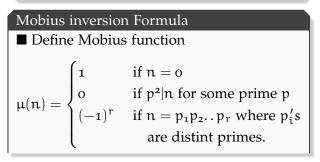
let
$$\sum_{d|n} f(d)$$
 sum over all divisors of n i.e. for

eg:
$$\sum_{d|6} f(d) = f(1) + f(2) + f(3) + f(6).$$

Multiplicative Function

a number theoretic function f(k) is called a multiplicative function if f(mn) = f(m)f(n) whenever gcd(m, n) = 1.

if f(d) is multiplicative then $F(n) = \sum_{d|n} f(d)$ is also a multiplicative function.



■ let
$$\mathbb{F}(n) = \sum_{d|n} \mu(d)$$
 then
 $\mathbb{F}(n) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{otherwise.} \end{cases}$

■ clearly µ(n) and 𝔽(n) are multiplicative.
 ■ The Formula : if f, 𝔅 are two number theoretic functions such that

$$F(n) = \sum_{d|n} f(d)$$

then

$$f(n) = \sum_{d|n} \mu(d) F(\frac{n}{d}) = \sum_{d|n} \mu(\frac{n}{d}) F(d).$$

Clearly from above we get if $F(n) = \sum_{d|n} f(d) \text{ is multiplicative then } f(n) \text{ is}$ also multiplicative.

Positive Divisors function

for a given integer n let $\tau(n)$ denote the number of positive divisors of n and $\sigma(n)$ denote the sum of these divisors then $\blacksquare \tau(n) = \sum 1$

Now if $n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r}$ is prime factorisation of n then

$$\begin{aligned} \tau(\mathfrak{n}) &= (k_1 + \mathfrak{1})(k_2 + \mathfrak{1})..(k_r + \mathfrak{1}) \\ &= \prod_{\mathfrak{1} \leqslant \mathfrak{i} \leqslant r} (k_1 + \mathfrak{1}). \end{aligned}$$

(use for each p_i there are $k_i + 1$ choices for divisors of n given by $d = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ for $o \leq a_i \leq k_i$ respectively).

$$\sigma(n) = \frac{p_1^{k_1+1} - 1}{p_1 - 1} \frac{p_2^{k_2+1} - 1}{p_2 - 1} \dots \frac{p_r^{k_r+1} - 1}{p_r - 1}$$
$$= \prod_{1 \leq i \leq r} \frac{p_i^{k_i+1} - 1}{p_i - 1}.$$

(use the factors in the product $(1 + p_1 + p_1^2 + ... + p_1^{k_1})(1 + p_2 + p_2^2 + ... + p_2^{k_2})...(1 + p_r + p_r^2 + ... + p_r^{k_r})$ are the only values d can take if d|n).

 \blacksquare $\tau(n)$ and $\sigma(n)$ are multiplicative functions.

$$\blacksquare n^{\tau(n)/2} = \prod_{d \mid n} d.$$

 $\blacksquare \tau(n)$ is odd iff n is a perfect square.

■ $\sigma(n)$ is odd iff n is a perfect square of twice a perfect square (use : for odd prime p, $1 + p + p^2 + ... + p^k$ is odd iff k is even).

Greatest integer function

Let [x] for real number x denote the largest integer less than or equal to x i.e. [x] is a unique integer satisfying $x - 1 < [x] \le x$

■ every $x = [x] + \theta$ for $o \le \theta < 1$. ■ if p appears in the prime factorisation of n then the highest exponent of p dividing n! is given by

$$\sum_{k=1}^{\infty} \left[\frac{n}{d}\right].$$

clearly this series converges as $[n/p^k] = o$ for $p^k > n$.

■ if f, F are two number theoretic functions such that

$$F(n) = \sum_{d|n} f(d)$$

then for $N \in \mathbb{Z}^+$

$$\sum_{n=1}^{N} F(n) = \sum_{k=1}^{N} f(k) \left[\frac{N}{k} \right].$$

Euler's ϕ function

Define $\phi(n)$ as the number of positive integers $\leqslant n$ that are relatively prime to n.

$$\begin{split} & \varphi(p) = p - 1 \text{ for a prime } p. \\ & \varphi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1) = p^k(1-\frac{1}{p}) \text{ (use: there are } p, 2p, \dots, p^2, \dots p^{k-1}p \text{ integers that are not co-prime } \leqslant p^k \text{).} \\ & \blacksquare \varphi \text{ is a multiplicative function.} \\ & \text{if } n = p_1^{k_1} p_2^{k_2} \dots p_r^{k_r} \text{ is its prime factorisation then} \\ & \blacksquare \\ & \varphi(n) = p_1^{k_1-1}(p_1-1) \dots p_2^{k_2-1}(p_2-1) \\ \qquad \dots p_r^{k_r-1}(p_r-1) \\ & = n(1-\frac{1}{p_1})(1-\frac{1}{p_2}) \dots (1-\frac{1}{p_r}). \\ & \blacksquare \varphi(n) \text{ is even } \forall n > 2. \\ & \blacksquare \frac{\sqrt{n}}{2} \leqslant \varphi(n) \leqslant n \text{ (use } p-1 > \sqrt{p} \text{ and } k-1/2 \geqslant k/2). \\ & \blacksquare \text{ if } n \text{ has } r \text{ distinct primes in its prime factorisation then } 2^r |\varphi(n)|. \end{aligned}$$

I if d|n then $\phi(d)|\phi(n)$.

6 More on Congruences

for n > 1 and gcd(a, n) = 1. If $a_1, a_2, ..., a_{\phi(n)}$ are positive integers less than n and relatively prime to n then $aa_1, aa_2, ..., aa_{\phi(n)}$ is also congruent to $a_1, a_2, ..., a_{\phi(n)}$ modulo n in some order.

Euler's Theorem

for $n \in \mathbb{Z}^+$ and gcd(a, n) = 1 we have

$$a^{\phi(n)} \equiv 1 \pmod{n}.$$

(use above point or induction on power of p by fermat's and binomial theorem.)

■ if gcd(m, n) = 1 then $m^{\phi(n)} + n^{\phi(m)} \equiv 1$ (mod mn)

$$n = \sum_{d|n} \varphi(d)$$

(use if $n = p^k$ then $\sum_{d|n=p^k} \phi(n) = \mathbf{1} + (p-\mathbf{1}) + (p^2 - p) + \ldots + (p^k - p^{k-1}) = p^k$ and multiplicity of ϕ for multiplicity of $\sum_{d|n} \phi(d)$). \blacksquare sum of positive integers less than n and relatively prime to n is equal to $\frac{n\phi(n)}{2}$ (use gcd(a, n) = gcd(n-a, n) so $\{n - a_1, n - a_2, \ldots n - a_{\phi(n)}\} = \{a_1, a_2, \ldots, a_{\phi(n)}\}$ integers relatively prime to n so the set sum is also equal).

7 **Primitive roots**

for n > 1 and gcd(a, n) = 1, define **Order** of a modulo n as the smallest +ve integer $k_s|_t a^k \equiv 1 \pmod{n}$.

if a has order k modulo n
then a^h ≡ 1 (mod n) iff k|h, in particular k|φ(n).
aⁱ ≡ a^j (mod n) iff i ≡ j (mod k).
integers a, a², ..., a^k are incongruent modulo n.
a^h has order k/gcd(k,h)

primitive root

for gcd(a, n) = 1 if a has order $\phi(n)$ (maximum order) then a is called primitive root of n.

if a is primitive root of n then $a, a^2, \dots a^{\phi(n)} = \{a_1, a_2, \dots, a_{\phi(n)}\}$ which is the set of relative primes less than n.

■ if n has primitive roots then there are $\phi(\phi(n))$ of them (use order argument).

7.1

existence of primitive roots

Lagrange Theorem

for a prime p and integral coefficient polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} \dots a_1 x + a_0$ with $a_n \not\equiv o \pmod{n}$ has at most n incongruent solutions modulo p for equation $f(x) \equiv o \pmod{p}$ (use induction).

for a prime p if d|p - 1 then $\blacksquare x^d - 1 \equiv 0$ (mod p) has exactly d solutions incongruent modulo p.

■ there are exactly $\phi(d)$ incongruent integers having order d modulo p.

■ in particular there are $\phi(p-1)$ primitive roots modulo p.

for $k \ge 3$ the integer 2^k has no primitive roots (use induction to prove $a^{2^{k-2}} \equiv 1 \pmod{2^k} \forall a$).

for m, n > 2 if gcd(m, n) = 1 then integer mn doesn't have a primitive root (use both $\phi(n), \phi(m)$ are even so $h = lcm(\phi(n), \phi(m)) = \phi(n)\phi(m)/gcd(m, n) \leqslant \phi(n)\phi(m)/2$ so by euler's theorem $a^h \equiv 1 \pmod{n}$ and $\equiv 1 \pmod{m}$ so $a^h \equiv 1 \pmod{m} \forall a$).

from above we get n doesn't have a primitive root if \blacksquare 2 odd primes divide n \blacksquare n = 2^kp for k \ge 2 and 2 /p if p is an odd prime and r a primitive root of p then $\mathbf{r}^{p} - \mathbf{1} \not\equiv \mathbf{1} \pmod{p^{2}}$ or $\mathbf{r}' = \mathbf{r} + \mathbf{p}, \mathbf{r}'^{p-1} \not\equiv \mathbf{1} \pmod{p^{2}}$ \mathbf{r} from above point we get r or r' is a primitive root of \mathbf{p}^{2} let r be a primitve root of p such that $\mathbf{r}^{p-1} \not\equiv$

1 (mod p^2) then

• for each $k \ge 2$

$$r^{p^{k-2}(p-1)} \not\equiv 1 \pmod{p^k}.$$

(use induction). \blacksquare r is a primitive root of p^k (use all above points).

Integer of form $2p^k$ for odd prime p has a primitive root (use $\phi(2p^k) = \phi(p^k)$ so any odd primitive root r of p^k is a primitive root of $2p^k$ (this exists as : if primitive root of p^k r' is even then $r = r' + p^k$ is odd)).

Summary

An integer n > 1 has a primitive root iff

$$n = 2, 4, p^k$$
 or $2p^k$

for odd prime p and $k \in \mathbb{Z}^+$.

7.2 Indices

Relative Index

If for a given $n\in \mathbb{Z}^+$ has a primitive root r then for a $_s|_t \mbox{ gcd}(a,n)=1$ the smallest integer $k_s|_t \mbox{ a }\equiv r^k \pmod{n}$ is called the index of a relative to r denoted by $k=ind_r \mbox{ a }(i.e. \ r^{ind_r \ a}\equiv a \pmod{n})$.

let n have a primitive root r and gcd(a, n) = gcd(b, n) = 1 then $\blacksquare o \leq ind_r a \leq \phi(a).$ $\blacksquare ind_r(ab) \equiv ind_r a + ind_r b \pmod{\phi(n)}.$ $\blacksquare ind_r a^k \equiv k ind_r a \pmod{\phi(n)}.$

 $\blacksquare \operatorname{ind}_{r} \mathfrak{1} \equiv o \pmod{\phi(\mathfrak{n})}$

Binomial Congruence

for $n \in \mathbb{Z}^+$ having a primitive root (any) r and gcd(a, n) = 1, the binomial congruence

 $x^k \equiv a \pmod{n} \quad k \ge 2$

is equivalent to the linear congruence

 $k \operatorname{ind}_{r} x \equiv \operatorname{ind}_{r} a \pmod{\varphi(a)}$

thus the binomial congruence has a solution x_o iff for $d = gcd(a, \varphi(n))$, $d|ind_r a$. If so then there are exactly d incongruent solutions.

eg: if n = p an odd prime and k = 2 then $\phi(p) = p - 1$ and as d = gcd(2, p - 1) = 2we have

 $x^2 \equiv a \pmod{p}$

has a solution iff $2|\operatorname{ind}_r a$, if s exactly 2 solutions. Now as r^k runs through p-1 values ($k = \operatorname{ind}_r a$), we get this binomial congruence has solution for precisely p-1/2 values of a.

Improving above arguments we have the binomial congruence

 $x^k \equiv \mathfrak{a} \ (\text{mod } \mathfrak{n}) \quad k \geqslant \mathtt{2}$

has a solution iff

 $\mathfrak{a}^{\mathfrak{p}(\mathfrak{n})/\mathfrak{d}} \equiv \mathfrak{1} \pmod{\mathfrak{n}}.$

for $d = gcd(k, \phi(n))$ (use this is equivalent to $\frac{\phi(n)}{d}$ ind_r $a \equiv o \pmod{\phi(a)}$ which has a solution iff $d|ind_r a|$.

thus

$$x^k \equiv a \pmod{p}$$

has solution iff

 $a^{p-1/d} \equiv 1 \pmod{p}$.

for d = gcd(k, p - 1).

Exponential Congruence

for an odd prime p with primitive root r, the exponential congruence

$$a^{x} \equiv b \pmod{p}$$

has a solution iff for $d = gcd(ind_r a, p - 1)$, $d|iind_r b$. If then there are d incongruent solutions modulo p - 1.

main problem

■ for a given off prime p the quadratic congruence

$$ax^2 + bx + c \equiv 0 \pmod{p}$$

where $a \not\equiv o \pmod{p}$ hold iff

$$2ax + b)^2 \equiv b^2 - 4ac \pmod{p}.$$

(use gcd(a, p) = 1 so gcd(4a, p) = 1 so the congruence is equivalent to $4a(ax^2 + bx + c) \equiv (2ax + b)^2 - (b^2 - 4ac) \equiv 0 \pmod{p}$

■ so solving this quadratic congruence is equivalent to solving $y^2 \equiv d \pmod{p}$ and $y \equiv 2ax + b \pmod{p}$ where $d = b^2 - 4ac$. ■ So this problem boils down to solving quadratic congruence of form $x^2 \equiv a \pmod{p}$.

■ if x_0 is solution of the above congruence then $p - x_0$ is also another $\neq \pmod{p}$ solution given $a \neq o \pmod{p}$.

■ thus by lagrange theorem these exhaust incongruent solutions modulo p.

Quadratic residue

for an odd prime p and gcd(a, p) = 1 is the quadratic congruence $x^2 \equiv a \pmod{p}$ has a solution the a is said to be quadratic residue of p otherwise a is quadratic nonresidue of p.

Euler's criterion a is quadratic residue of p (an odd prime) iff $a^{(p-1)/2} \equiv 1 \pmod{p}.$ (use if r is primitive root of p then $a \equiv r^k \pmod{p}$ and $a^{(p-1)/2} \equiv r^{k(p-1)/2} \equiv 1 \pmod{p}$ so p - 1 | k(p - 1) |1)/2 or k = 2j). now $(a^{(p-1)/2} - 1)(a^{(p-1)/2} + 1) \equiv a^{p-1} - a^{p-1}$ $1 \equiv 0 \pmod{p}$ so either $a^{(p-1)/2} \equiv 1$ or -1(mod p)Thus if $a^{(p-1)/2} \equiv -1 \pmod{p}$ then a is quadratic nonresidue of p. Legendre symbol for an odd prime p and gcd(a, p) = 1 define $\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if a is quadratic residue of p,} \\ -1 & \text{if a is quadratic nonresidue} \\ & \text{of p.} \end{cases}$ if a and b are relatively prime to odd prime p then a(p-1)/2 - (a) (mod m)

$$a \equiv b \pmod{p} \implies (\frac{a}{p}) \pmod{p}.$$

$$a \equiv b \pmod{p} \implies (\frac{a}{p}) = (\frac{b}{p}).$$

$$(\frac{ab}{p}) = (\frac{a}{p})(\frac{b}{p}).$$

$$(\frac{a^2}{p}) = 1$$

$$(\frac{1}{p}) = 1 \text{ and } (\frac{-1}{p}) = (-1)^{(p-1)/2}.$$

 $\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{4}, \\ -1 & \text{if } p \equiv 3 \pmod{4}. \end{cases}$

for off prime p

$$\sum_{a=1}^{p-1}(\frac{a}{p})=o.$$

Hence there are precisely (p - 1)/2quadratic residue and (p - 1)/2 quadratic nonresidue of p (use if r is primitive root of p then $x^2 \equiv r \pmod{p}$ has no solution so $r^{(p-1)/2} \equiv -1$ (mod p) so $\sum_{a=1}^{p-1} (\frac{a}{p}) = \sum_{k=1}^{p-1})$ Thus from above point we have for an odd prime p having primitive root r: quadratic residue of p are congruent to even powers of r modulo p and quadratic nonresidues congruent of p to odd powers of r modulo p.

Gauss's Lemma

for an odd prime p and gcd(a, p) = 1 if there are n integers in the set $\{a, 2a, 3a, ..., \frac{p-1}{2}a\}$ whose remainder upon division by p exceeds p/2 then

$$\left(\frac{a}{n}\right) = (-1)^n$$

$$(\frac{2}{p}) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{8} \\ & \text{or } p \equiv 7 \pmod{8} \\ -1 & \text{if } p \equiv 3 \pmod{8} \\ & \text{or } p \equiv 5 \pmod{8} \end{cases}.$$

(use gauss's lemma)

From above point and similarities of $(p^2 - 1)/8$ we get if p is an odd prime then

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}$$

if p is an odd prime and a an odd integer with gcd(a, p) = then

$$\left(\frac{a}{n}\right) = (-1)^{\sum_{k=1}^{(p-1)/2} [ka/p]}$$

where $\left[\cdot\right]$ denotes the greatest integer function.

Quadratic Reciprocity Law

if p and q are distinct odd primes then

$$(\frac{p}{q})(\frac{q}{p}) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

Consequences : if p and q are distinct odd primes then

$$(\frac{p}{q})(\frac{q}{p}) = \begin{cases} 1 & \text{if } p \text{ or } q \equiv 1 \pmod{4} \\ -1 & \text{if } p \equiv q \equiv 3 \pmod{4} \end{cases}.$$
$$(\frac{p}{q}) = \begin{cases} (\frac{q}{p}) & \text{if } p \text{ or } q \equiv 1 \pmod{4} \\ -(\frac{q}{p}) & \text{if } p \equiv q \equiv 3 \pmod{4} \end{cases}.$$

Calculation of $\left(\frac{a}{p}\right)$

if $a=\pm 2^{k_0}p_1^{k_1}p_2^{k_2}..\,p_r^{k_r}$ is its prime factorisation then

$$(\frac{a}{p}) = (\frac{\pm 1}{p})(\frac{2}{p})^{k_0}(\frac{p_1}{p})^{k_1}(\frac{p_2}{p})^{k_2} \dots (\frac{p_r}{p})^{k_r}.$$

Thus we can invert above for odd primes p_i to get a smaller denominator by above point and continue this process until we end up with blocks only of form $(\frac{\pm 1}{q_i})$ and $(\frac{2}{q_i})$ for odd primes $q_i \leq p$ which can be easily calculated by $(\frac{-1}{q_i}) = (-1)^{(q_i-1)/2}$ and $(\frac{2}{q_i}) = (-1)^{(q_i^2-1)/8}$.

for odd prime p and $gcd(\overline{a, p)} = 1$

 $x^2 \equiv a \pmod{p^n}$

is solvable iff $\left(\frac{a}{p}\right) = 1$.

for odd integer a $x^2 \equiv a \pmod{2}$ is always solvable. $x^2 \equiv a \pmod{2}$ is solvable iff $a \equiv 1 \pmod{4}$. $x^2 \equiv a \pmod{2^n}$ for $n \ge 3$ is solvable iff $a \equiv 1 \pmod{8}$.

From above points we have if $n = 2^{k_0} p_1^{k_1} p_2^{k_2} ... p_r^{k_r}$ for odd primes p_i and gcd(a, n) = 1 then $x^2 \equiv a \pmod{n}$ is solvable iff $\blacksquare \left(\frac{a}{p_i}\right) = 1$ $\blacksquare a \equiv 1 \pmod{4}$ if 4|a but 8 / |a or $a \equiv 1 \pmod{8}$ if 8|a.

7 References

[1] David M. Burton : Elementary number theory, McGraw·Hill, 7, (2010).