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o | Symbols used

slt — such that.
iff — if and only if.
alb — a divides b .
3! — there exists unique.

1 Preliminaries

Principle of Mathematical induction

B First principle : If S is a set of positive in-
tegers (Z") with the following :

e1€S.

ekeS = k+1€8S.

then S is the set of positive integers.

B Second principle (strong induction): if
SCZ*lt

e1¢€Sand

e1,2,.., keSS = k+1€8S

then S =Z".

2 | Divisibility in Z*

B for every a,b € Z,3(unique)q € Z,r €
Zt ta=gb+rando>rT > bl

Bl a|b (a divides b) iff a = gb for some (unique)
qe”Z

M a|b then |a| < |b].

let d = gcd(a,b) denote greatest common
divisor of a and b then
Balx,yeZgid=xa+yb

B d = leastelement of S = {xa + yb|xa +
yb >o0,x,y € Z}.

B set {xa +ybl|x,y € Z} contains precisely
multiples of d.

M if alc and blc then ablc if gcd(a,b) = 1.

B Euclid’s lemma : albc and ged(a,b) =1
then alc.

B a and b are relatively primes if
ged(a,b) = 1 iff 1 = xa+yb for some
x,y € ”Z.




B if a = qb + r then gcd(a,b) = ged(b, 7).
thus gcd(a,b) is the last remainder in the
euclidean algorithm

W gcd(ka, kb) = [kl ged(a, b) (here k # o) thus
prime factorisation ofa ad b comes into play
here.

B if d = gcd(a, b) then there are relatively
prime integers 1,s such that a = rd and
b = sd.

B gcd(a,bc) = 1 iff ged(a,b) = 1 and
ged(a,c) = 1.

M gcd(a,n) =ged(kn+a,n) forallk € ZT.
B if gcd(a,b) = d then there exist
a;, b;slta=a;d,b=">b;dand ged(a,,b;) =
1.

let 1 = lem(a, b) denote the lowest common
multiple of a and b. then

W gcd(a,b)lem(a, b) = ab.

B Icm(a, b) = ab iff ged(a, b) = 1.

Equations in one or more variable that is to
be solved in integers is called a Diophantine
equation.

B The linear diophantine equation ax +
by = c for given a,b,c € Z has a solution
iff ged(a, b)lc. (if so then as dlc = ¢ = dt =
t(Xoa+Yyob) = X =xot,y = Yot.)

M all solutions of the above linear diophan-
tine equation is of form

x=%+(3)t y=yo+ (%)t

for some solution x,, Yy, and arbitrary t € Z
i.e. there are infinitely many solutions for
the linear diophatine equation ax + by = c.

Diophantine equations

3 | Congruences

is defined as true if n|(a —b) (note a,b € Z and
1<neZt) otherwise a Zb (mod n).

properties

B = mod n is a equivalence relation on Z
for any n > 1.

ifa=b (mod n)and ¢ =b (mod n) then
Bat+c=b+d (modn).

M ac = bd (mod n).

B o* =b* (mod n) fork e Z+.

M it is not true that ca = ¢b (mod n) —
a=Db (mod n).

Mca=cb (modn) = a=b (mod n/d)
where d = gcd(c, n).

B if a =b (modn) and min then a = b
(mod m).

B if gcd(n,m) = 1, a = b (mod n) and
a=b (mod m) then a =b (mod mn)
Bifa=b (mod n)and din,a,bthena/d =
b/d (mod n)/d.

B if a = b (modn) then gcd(a,n) =
ged(b, n).

M if ac = bd (mod n). and b = d (mod n)
with ged(b,n) = 1 then a = ¢ (mod n).

[ 3.1 Linear congruences

equation ax = b (mod n) has a solution iff
d|b for d = gcd(a, n). if so the this equation
has d mutually incongruent solutions mod
M. (use : this is same as solutions for diophantine

equation ax —ny = b).

from above point ax = b (mod n). has a
unique solution mod n iff ged(a, n) = 1.

system of linear congruence equations

a;x=b; (mod m,),
a,x=b, (mod m,),
agx = b (mod my).

/ . . o
where m/s are relatively prime pairs is




equivalent to solving system

x=c¢; (modn,),

=c¢, (modn,),

X =ck (mod ny).

where ny = my/di, di = gcd(ai, my)
and c¢; = (bi/di)(af) for af(ai/di) = 1
(mod ny) (use system is solvable iff each equa-

tion is solvable ie. dilbi, ged(ai/di,ni) = 1 so

Jlaf st a{ai/di = 1 (mod ny).)

Chinese Remainder Theorem

for ng € Z* and ged(ny,ny) = 1 for i # j
the system of linear congruence equations

x=a; (mod ny),

=a, (modn,),

x=ax (mod ny).

has a simultaneous solution. This solution
is unique upto mod n = n;n,..ny.

And this solution is given by x = a;N;x; +
A NLX,. . agNx where Ny = n/ny =
Ny . M1 Miyq.- Nk, for Nixi =1 (mod Tli).

The system of linear congruences

ax+by=r (mod n)

cx+dy=s (modn)

has a unique solution mod m whenever
gcd(ad —be,n) = 1.

/

Fermat’s Little Theorem

for a prime p and p /Ja we have aP™' = 1
(mod p). (use as {a,2q,.., (p — 1)a} forms complete
congruence residue of pso a.2a..(p—1)a=1.2..(p—
1) (mod p) = (p—1)!laP7 ' = (p—1)! (mod p).)

Wilson’s Theorem

p is a prime iff p|{(p—1)!+1ie (p—1)! =
—1 (mod p) (use for 1
Aa’ € {2,3,..p —2}slt aa’ = 1 (mod p) so 2.3...p —

< a<p—1a /lpso

2=(p—2)=1 (mod p).)

Primes: Properties,
4 | Theorems and Con-
jectures.

let p,q € Z* be primes (p > 1 is prime in Z" if
only divisors of p are 1 and p.) and Vab € Z.then

‘l plab =

. plaorpb B plak :>J
pla or pla*.

Fundamental Theorem of Arithmetic

Every positive integer n > 1 is a prime or
product of primes such that its representa-
tion of the form

Lol 1
n = ppl.. Py

for primes p; < p, <.. <pxand l; € Z* is

unique.

B there exists prime p appearing in prime
factorization of a i.e. a =pmglip < Va.

B if a > 1 is not divisible by any prime
p < Va then a is a prime (simple restatement of
above point.)

B There are an Infinite number of primes in
7+

M let p,, denote the nt" prime in ascending
order of primes then p,, < 2™.

B for n > 2 there exists a prime such that
n < p < n! (use: if not then n! — 1 is not prime and
all its prime divisors are p <n = pn!thusp <n

leading to contradiction pl1. )

B Goldbach conjecture : every even integer
is sum of two numbers that are either prime
or 1.




B fwin prime question : are there infinitely
many twin prime pairs (primes with a gap of 2
integers between them ).

B for n € Z* there are n consecutive in-
tegers all of them composite ((n+1)!+2,(n+

)!+3,..,(n+ 1)+ (n+1)). )

Dirichlet theorem

If a and b are relatively prime positive inte-
gers, then the arithmetic progression a, a +
b,a+2b,a+3b,.. contains infinitely many
primes.

Fermat Kraitchik Factorisation method

B for odd integer n if n = x*> —y? then
clearly n = (x +y)(x —y) or if n is com-
positei.e. n = ab thenn = (%"’)2 — (‘I%b)2
holds as both a, b are odd.

B So rearranging we get x> —n = y* now
search for smallest integers k 5|t k> > n and
look at numbers k> —n,(k +1)2 —n, (k +
2)2 —mn,.. until a value m > /n is found
making m* —n a square to give a factorisa-
tion of n =ml.

B this process cannot go indefinitely as
()2 —n = (B51)2 gives trivial factorisa-
tionn =mn.1.

B thus this process terminates for some m
and n is composite if not then clearly n is a
prime.

’ 4.1

Divisibility by Small primes

(5|aiff Qo =0 Or 5. )

11|a iff 11]ag —a; + as.. + (—1)™am (use 10 =
—1 (mod 11) ).

7,11, 13|a iff 7, 11, 13|[(100a, + 10a; + a,)

—(100a5 + 1004 + a3) + (100ag + 100, +
ag)..] i.e. 7,11,13 divides a iff alternating
sum of 3 digits taken at a time in digits of a
is divisible by 7,11, 13 (use 7.11.13 = 1001 and

if n is even 103™ = 1,103"*! = 10,103""2> = 100
(mod 1001). of if n is odd 103™ = —1,103" "1 =
—10,103""2 = —100 (mod 1001)).

Number theoretic

5

functions

Any function whose domain is the set of
positive integers (z*) is called a number the-
oretic function or arithmetic function.

let Z f(d) sum over all divisors of n i.e. for
dn

eg: > f(d) = f(1) +f(2) + (3) + f(6).
dl6

Multiplicative Function

a number theoretic function f(k) is called a
multiplicative function if f(mn) = f(m)f(n)
whenever ged(m,n) = 1.

leta=ani0™+ampm_q10m—1+.. +a;10+ a,
be the decimal representation of a then

(2|a iff unit digits of a = a, = 2,4,8 or o. )

3,9|a iff 3,9/am + am—1.. + a; + a, ie. iff
sum of the digits in decimal representation
of a is divisible by 3 or 9 (use 10=1 (mod 9) =
1 (mod 3).)

4la iff 4|l10a; + a, i.e. iff 4 divides the num-
ber formed by tens and units digits of a. (use
108 =0 (mod 4) ifk > 2).

if f(d) is multiplicative then F(n) = Z f(d)
dn
is also a multiplicative function.

Mobius inversion Formula

B Define Mobius function

1 ifn=o
0 if p*In for some prime p
if n = p,p,..pr where p{s

are distint primes.




W let F(n) = ) u(d) then
dn

F(n) = 1 ifn=1
"~ lo otherwise.

M clearly p(n) and F(n) are multiplicative.
B The Formula : if f, F are two number the-
oretic functions such that

Fin) =) f(d)

dn

then

f(n) = 3 w(dF(3) = Y w(F@.

din din

Clearly from above we get if

F(n) = Z f(d) is multiplicative then f(n) is
din
also multiplicative.

Positive Divisors function

for a given integer n let t(n) denote the
number of positive divisors of n and o(n)
denote the sum of these divisors then

Htn) = Zl.
HBon) = Zd.

dn
Now if n = p¥ipk2. . pkr is prime factorisa-
tion of n then
|

Tm) = (ky+1)(ka+1).. (ke + 1)

= I k1)

1<igr

(use for each p; there are ki + 1 choices for divisors of

n given by d = p'ps2..py" for o < a; < ki respec-

tively).

ki+1 ko+1 41
—1 —1 T —1

1 2

o(n) = P P Py

P1—1 p.—1 pr—1

_piki-i-l —1
= —
1<i<r bi

(use the factors in the product (1 +p; +pZ+.. +
P +P2+PE 4. + P53 (1+Pr +PE+.. +PF)
are the only values d can take if d|n ).
B t(n) and o(n) are multiplicative func-
tions.
Wnt™/2 = T7 d.

dn
B t(n) is odd iff n is a perfect square.
B o(n) is odd iff n is a perfect square of
twice a perfect square (use :
p, 1+p+p>+.. +p¥isodd iff k is even).

for odd prime

1 o(n)
"l
dn
m) o(d)=) =r(a)
dn n|d

Greatest integer function

Let [x] for real number x denote the largest
integer less than or equal to x ie. [x] is a
unique integer satisfying x —1 < [x] <x




Mevery x =[x] +0foro<0 <1

B if p appears in the prime factorisation of
n then the highest exponent of p dividing n!
is given by

> (3]

clearly this series converges as m/p*] = o
for p* > n.

M if f,F are two number theoretic functions
such that

Fin)=) f(d)
dn
then for N € Z+

N N N
T;F(n) =) f(k) [k] :

k=1

Euler’s ¢ function

Define ¢(n) as the number of positive
integers< n that are relatively prime to n.

B $(p) =p—1 for a prime p.

B op*) = p—pt = pip—1) =
pk(l = %) (use: there are p,2p,..,p>,..p* p inte-
gers that are not co-prime < pk )-

B ¢ is a multiplicative function.

if n = pXpke. pkr is its prime factorisation
then

|

d(n) =py*(pr—1)..p5 " (p2—1)

Py (pr—1)
—n(1——)(1— —).. (1— —).
P P2 Pr

B p(2k) =251,
B p(n) is even Vn > 2.
] @ < ¢dn) € n (use p—1 > p and

k—1/2 > k/2).

B if n has r distinct primes in its prime
factorisation then 27| (n) .

Bl if din then ¢(d)|d(n).

6 | More on Congruences

for n > 1 and gecd(a,n) = 1. If
ag, Qz,..,Q¢(n) are positive integers less
than n and relatively prime to m then
aag, ady, .., a0g(n) is also congruent to
ay, 0z, .., ¢ (n) Mmodulo n in some order.

Euler’s Theorem
forn € Z" and ged(a,n) = 1 we have

a®™ =1 (mod n).

(use above point or induction on power of p by fer-
mat’s and binomial theorem.)

B if gcd(m, n) = 1 then m®(™) 4 né(m) = 1
(mod mn)
|

n=> ¢(d)

dn

(use if n = p¥ then Zdmepk ¢(M) = 1+ (p—1) +
(P> —p)+.. + (p* —p*~1) = p* and multiplicity of ¢
for multiplicity of }_4,, ¢(d)). Il sum of positive
integers less than n and relatively prime ton
S el g 222l
qual to —;
MmM—a,n—a,,..n— a¢[n)} ={ay, a,,. .,aq,(n)} inte-

(use ged(a,n) = ged(n—a,n) so

gers relatively prime to n so the set sum is also equal).

7 Primitive roots

for n > 1 and gcd(a,n) = 1, define Order
of a modulo n as the smallest +ve integer
ksl a®* =1 (mod n).

if a has order k modulo n

B then a" = 1 (mod n) iff k|h, in particular
Klp(n).

Ha =d (modn)iffi=j (mod k).

M integers a, a?, .., a are incongruent mod-
ulo n.

h
B o™ has order Zd(kR)




primitive root

for ged(a,n) = 1 if a has order ¢(n) (maxi-
mum order) then a is called primitive root of
n.

/

if a is primitive root of n then
B {qa?..a®M) {a, az,.., Q¢ )}
which is the set of relative primes less than
n.

B if n has primitive roots then there are
®(d(n)) of them (use order argument).

[ 7.1

existence of primitive roots

for a prime p and integral coefficient poly-
nomial f(x) AnX™ 4+ an_x" L. ax + ao
with a,, Z o (mod n) has at most n in-
congruent solutions modulo p for equation
f(x) = o (mod p) (use induction).

for a prime p if dip—1 then @ x4 —1 = o
(mod p) has exactly d solutions incongru-
ent modulo p.

B there are exactly ¢(d) incongruent inte-
gers having order d modulo p.

B in particular there are ¢(p — 1) primitive
roots modulo p.

for k > 3 the integer 2 has no primitive
roots (use induction to prove =1 (mod 2¥)Va

).

for m,n > 2 if ged(m,n) = 1 then inte-
ger mn doesn’t have a primitive root (use
both ¢(n), $(m) are even so h = lem(Pp(n), p(m)) =
d(Mm)p(m)/ged(m,n) < d(n)dp(m)/2 so by euler’s
h =1 (mod n) and = 1 (mod m) so a™* =

theorem a™ = 1

1 (mod mn)Va).

from above we get n doesn’t have a primi-
tive root if

B 2 odd primes divide n
Bn=2Fpfork>2and2 /p

Lagrange Theorem

\
if p is an odd prime and t a primitive root
of p then
B w—1 # 1 (modp?) or v/ = r+

p, TPt # 1 (mod p?)

B from above point we get r or 1’ is a prim-
itive root of p?

let r be a primitve root of p such that P~ =
1 (mod p?) then

M for each k > 2

P P=1) £ 1 (mod Pe).

(use induction). M T is a primitive root of p*
(use all above points).

Integer of form 2p* for odd prime p has a
primitive root (use ¢(2p*) = ¢(p*) so any odd
primitive root r of pX is a primitive root of 2p* (
this exists as : if primitive root of p¥ ’ is even then

r =1’ +pkis odd)).

An integer n > 1 has a primitive root iff

n =2,4,p" or 2p*

for odd prime p and k € Z*.

|72 | Indices

l

Relative Index

If for a given n € Z™" has a primitive root r
then for a |y ged(a,n) =1

the smallest integer kst a = r* (mod n) is
called the index of a relative to r denoted by
k = ind; a (ie. ™4 @ = q (mod n)).

k

/

let n have a primitive root r and gcd(a,n) =
gcd(b,n) = 1 then

Mo <ind;a < ¢(a).

B ind,(ab) =ind, a +ind, b (mod ¢(n)).
M ind. a* = kind, a (mod ¢(n)).

B ind, 1 =0 (mod ¢(n))




Binomial Congruence

for n € Z* having a primitive root (any) T
and gcd(a, n) = 1, the binomial congruence

k

x*=a (modn) k=2

is equivalent to the linear congruence
kind, x = ind; a (mod ¢(a))

thus the binomial congruence has a solution
Xo iff for d = ged(a, (1)) , dlind, a. If so
then there are exactly d incongruent solu-
tions.

eg: if n = p an odd prime and k = 2 then
¢(p) =p—1andasd =gcd(2,p—1) =2
we have

XZ

= a (mod p)

has a solution iff 2|ind; a, if s exactly
2 solutions. Now as t* runs through
p — 1 values (k = ind; a), we get this bi-
nomial congruence has solution for pre-
cisely p — 1/2 values of a.

Improving above arguments we have the

binomial congruence
x*=a (modn) k>2

has a solution iff

a®M)/d =1 (mod n).

for d = ged(k, d(n)) (use this is equivalent to

®() jnd, a = o (mod ¢(a)) which has a solution iff

d|ind; a ).

thus

xk

= a (mod p)
has solution iff

aP~/4d =1 (mod p).

for d = gcd(k,p —1).

Exponential Congruence
for an odd prime p with primitive root r, the
exponential congruence

a*=b (mod p)

has a solution iff for d = ged(ind; a,p — 1)
, dliind, b. If then there are d incongruent
solutions modulo p — 1.

Quadratic
residue

7.3 Congruence and

B for a given off prime p the quadratic con-
gruence

ax*+bx+c =0 (mod p)

where a # o (mod p) hold iff
(2ax+b)? = b? —4ac (mod p).

(use ged(a, p) = 1 s0 ged(4a, p) = 1 so the congruence
is equivalent to 4a(ax® +bx +¢) = (2ax +b)* — (b —
4ac) =o (mod p))

B so solving this quadratic congruence is
equivalent to solving y> = d (mod p) and
y = 2ax+b (mod p) where d = b* — 4ac.
B So this problem boils down to solv-
ing quadratic congruence of form x* = a
(mod p).

B if x, is solution of the above congruence
then p — x, is also another # (mod p) solu-
tion given a # o (mod p).

B thus by lagrange theorem these exhaust
incongruent solutions modulo p.

Quadratic residue

for an odd prime p and ged(a, p) = 1 is the
quadratic congruence x*> = a (mod p) has a
solution the a is said to be quadratic residue
of p otherwise a is quadratic nonresidue of

p.




Euler’s criterion

a is quadratic residue of p (an odd prime) iff
aP=1/2 =1 (mod p).

(use if r is primitive root of p then a = vk (mod p)
and a(P~1)/2 = tk(P=1)/2 = 1 (mod p)sop—1lk(p—
1)/20rk =2j).

now (a(P*I)/2 _ 1)((1(13*1)/2 L)) = @t —
1 =0 (mod p) so either alP~1/2 =1 0r —1
(mod p)

Thus if aP~1/2 = —1 (mod p) then a is
quadratic nonresidue of p.

Legendre symbol

for an odd prime p and ged(a, p) = 1 define

1 if a is quadratic residue of p,
(3) =4 -1 if ais quadratic nonresidue

of p.

if a and b are relatively prime to odd prime
p then

WPz = (%) (mod p).
Ba=b (modp) = (2)=(

P )
W (22) = (2)(2).

g |o

P Pty
m (L) =1
[ | (%) =1 and (_?1) = (—1)P—1)/2,

. 1 if p=1 (mod 4),
()=1"

for off prime p

if p=3 (mod 4).

a
> (=0
a=1 P

Hence there are precisely (p — 1)/2

quadratic residue and (p — 1)/2 quadratic
nonresidue of p (use if r is primitive root of p then
x> = v (mod p) has no solution so r(P~1)/2 = —1

= o p—1
(modp)so 3 (Z)=) )
a=1 k=1

Thus from above point we have for an odd
prime p having primitive root T : quadratic
residue of p are congruent to even powers of
T modulo p and quadratic nonresidues con-
gruent of p to odd powers of r modulo p.

Gauss’s Lemma

for an odd prime p and gecd(a, p) = 1 if there
are n integers in the set {a,2q,3a,.., 2~a}
whose remainder upon division by p ex-

ceeds p/2 then

1 ifp=1 (mod 8)
2 orp=7 (mod 8)
& —1 ifp=3 (mod8)
orp=5 (mod 8)

(use gauss’s lemma)

From above point and similarities of (p* —
1)/8 we get if p is an odd prime then

if p is an odd prime and a an odd integer
with ged(a, p) = then

(8) = (—1)Z5*ea/p]

where [] denotes the greatest integer func-
tion.

Quadratic Reciprocity Law

if p and q are distinct odd primes then

(B)(&) = (-7 7.

Consequences : if p and q are distinct odd
primes then




(E)(ﬂ): 1 ifporg=1 (mod 4)
q P —1 ifp=q=3 (mody4) "

|

(B): () ifporg=1 (mod 4)
a |- ifp=g=3 (mod4)

Calculation of ( %)

if a = +2kopfipke. pkr s its prime factori-
sation then

(

Py

) = (E2)(2)%o(Ba)l (B2)fe

<le

Thus we can invert above for odd primes
pi to get a smaller denominator by above
point and continue this process until we end
up with blocks only of form (%) and (37)
for odd primes q; < p which can be eas-
ily calculated by (;—:) = (—1)(9:=1)/2 and
(2) = (—1)ai=1)/8,

2

qi

for odd prime p and ged(a,p) =1

2

x> =a (mod p™)

is solvable iff (%) =1.

for odd integer a

B x> = a (mod 2) is always solvable.
B x> = a (mod 4) is solvable iff a
(mod 4).

B x> = a (mod 2™) for n > 3 is solvable iff
a=1 (mod 8).

1

/

From above points we have if n
skopkipks  pkr for odd primes p; and
ged(a,n) = 1 then x> = a (mod n) is solv-
able iff

[ | (p%) = il

Ba=1 (mody)if 4gjabut8 Jaora =1
(mod 8) if 8|a.

10
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[1] David M. Burton : Elementary number the-
ory, McGraw-Hill, 7, (2010).
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