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Symbols used:

iff → if and only if

Capital letters → Matrices Am×n = [aij]m×n

AT or A′ → Transpose of Matrix

Ā → Conjugate of Matrix

AB → Matrix product

|A| or det(A) → Determinant of Matrix

tr(A) or trace(A) → trace of Matrix

A∗ → Conjugate transpose of Matrix

A−1 → Inverse of Matrix

I → Identity

Im(A) → Image or range space of A

rank(A) or r(A) → Dimension of Range space of A

ker(A) → Null space of A

null(A) → Dimension of Null space of A

F → Field

1 Basic properties

• A(BC) = (AB)C

• tr(AB) = tr(BA)

• (AB)′ = B′A′

• (AB)∗ = B∗A∗

• if A is Hermitian then iA is skew-Hermitian
and vise-versa.
• if A,B are symmetric, AB is symmetric iff
AB = BA.
• AA′,A′A are always symmetric.
• For any Square Matrix A:
■ A+A′ is symmetric.
■ A−A′ is skew- symmetric.
■ A+A∗ is Hermitian.
■ A−A∗ is skew-Hermitian .
• By preceding point any Square matrix can
be decomposed (by +) into symmetric - skew-
symmetric or Hermitian- skew-Hermitian pair.
• B′AB is symmetric or skew as is A

• B∗AB is hermitian or skew as is A

• Determinant is a Multiliear (row), Alternat-
ing and Normalized Function on Matrices.
• Determinant of upper or lower triangle or di-
agonal matrix is equal to product of diagonal
elements.
• |AB| = |A||B| = |BA|

• |A′| = |A|

• |A∗| = ¯|A|

• A is invertible iff |A| ̸= 0.

• A−1 =
adj(A)

|A|
where adj(A) is the trans-

pose of co-factor matrix.
• B−1 −A−1 = B−1(A−B)A−1
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• Cramer’s rule for a system of linear equa-
tions Ax = b where A is square and for
x = [x1, x2, . . , xn]T we have xi =

|A←ib|
|A|

where
A←i b is obtained by replacing ith column of
A by b.

• |adj(A)| = |A|n−1 where A is an n× n ma-
trix

• adj(A∗) = Adj(A)∗

• adj(A−1) = adj(A)−1 = A/|A|

• adj(adj(A)) = |A|n−2A

• adj(AB) = adj(B)adj(A) for non-singular
matrices A,B.

• A is orthogonal if A′A = I

• A is orthogonal =⇒ |A| = ±1 =⇒ invert-
ible.

• A is unitary if A∗A = I

• if A,B are orthogonal then so are AB,BA.
Similar result follows in unitary case also.

• rank(A) = r iff all the r+ 1 order minors
are zero i.e. if any one of rth order minor is
non zero then rank(A) ≥ r.

• rank(A) = rank(A′) = rank(A∗)

• Elementary transformation: exchange of
rows, multiplication of row by non zero con-
stant, addition of k multiple of a row to another
row.

• Elementary transformations doesn’t change
the rank of a matrix.

• Every elementary transformation has a cor-
responding non singular matrix which when
pre-multiplied to a given matrix gives the re-
spective operation.

• Normal form of a matrix : (Echelon form) A
matrix which can be partitioned into identity
and null matrices where the identity is present
in upper-left part.

• ∃P,Q non-singular square matrices such that
N = PAQ where A is any matrix and N is its
normal or Echelon form.

• rank(AB) ≤min({rank(A), rank(B)}).

• rank(A+B) ≤ rank(A)+ rank(B).

• Sylvester inequality :
for any matrices Am×k,Bk×n

rank(AB) = rank(B)−dim(Im(B)∩ ker(A))

so rank(A)+Rank(B)− k ≤ rank(AB)

≤min({rank(A),Rank(B)}).

(use: for Bx ̸= 0, ABx = A(Bx) = 0 iff x ∈ Im(B) ∩
ker(A) and that dim(Im(B) ∩ ker(A)) ≤ null(A) =

k− r(A) so −dim(Im(B)∩ ker(A)) ≥ r(A)− k. )
• Frobenius Inequality :
for Am×k,Bk×p,Cp×n

rank(AB)+ rank(BC) ≤ rank(B)+ rank(ABC).

• rank(A) = rank(A∗A)

• if all entries of A are real then rank(A′A) =

rank(A).
• if A is n-squared then :
■ rank(A) = n =⇒ rank(adj(A)) = n.
■ rank(A) = n− 1 =⇒ rank(adj(A)) = 1.
■ rank(A) < n− 1 =⇒ rank(adj(A)) = 0

i.e. adj(A) ≡ 0. (use minors and cofactor definition
of Adj(A).)
• rank(A)≥ rank(A2)≥ . . ≥rank(An)≥ ..
• null(A) ≤ null(A2) ≤ . . ≤ null(An) ≤ ..
• if rank(Am) = rank(Am+1) then
■ rank(Ak) = rank(Am) ∀k ≥m

■ null(Ak) = null(Am) ∀k ≥m

• Eigenvalues of Hermitian matrices are real.
( if λ is eigenvalue then (Ax)∗ = x∗A∗ = x∗A = (λx)∗ =

λx∗ so x∗A∗x = λx∗x = λx∗x =⇒ λ = λ)

• Eigenvalues of Skew-Hermitian are purely
imaginary or zero.
• If λ is Eigenvalue of Unitary matrix A then
|λ| = 1
(if Ux = λx then x∗U∗Ux = x∗Ix = x∗x but
(x∗U∗)(Ux) = λλx∗x. )

• Real Eigenvalues of Orthogonal Matrices are
1,−1 only.
• Eigenvalues of A and A′ are same.
• Eigenvalues of triangular, diagonal matrices
are its diagonal elements.
• if λ is an eigenvalue of non-singular matrix
A then
■ λ ̸= 0
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■
1
λ is the eigenvalue of A−1.

■ λk is the eigenvalue of Ak.
■

|A|
λ is the eigenvalue of adj(A).

• if {λi} are eigenvalues of A then eigenvalues
of B = p(A) are of form p(λi) only.
• For An with eigenvalues λ1,λ2, . . ,λn

trace(A) =
∑n

i=1 λi , det(A) =
∏n

i=1 λi and
trace(adj(A)) =

∑n
i=1

∏n
j̸=i λi.

• If A = P−1BP then A and B have same eigen-
values
• for square Matrices A,B eigenvalues of AB

and BA are same.
( use if ABx = λx then BA(Bx) = B(ABx) = λBx so λ is
eigenvalue of BA also and vis-a-viz.)

• Geometric multiplicity (no of eigenvectors
for an eigenvalue) ≤ Algebraic multiplic-
ity(order of eigenvalue in characteristic polyno-
mial).
• A = P−1BP this Relation ARB (similarity) is
equivalence, determinant invariant, eigenvalue
invariant , trace invariant.
• A matrix is diagonalizable if it is similar to a
diagonal matrix
• A matric is diagonalizable iff for each of its
eigenvalue Geometric multiplicity = Algebraic
multiplicity.
• square matix A is diagonalizable iff minimal
polynomial of A splits into distinct linear fac-
tors in the given field i.e. minimal polynomial
of A is separable and has only linear irreducible
factors.
• A non-zero Nil-potent (Am = 0) matrix has
eigenvalues as zero only.
• A non-zero Nil-potent matrix is never Diag-
onalizable.
(if A is diagonalizable then P−1AP = D so (P−1AP)m =

P−1AmP = 0 = Dm =⇒ D ≡ 0 thus A ≡ 0 )

• Schurs theorems:
■ Every Square matrix A is Unitarily similar

to Upper triangular matrix whose diagonals are
eigenvalues of A (complex values included).
■ If A ∈ Mn(R) and has only real eigenval-

ues then it is real orthogonally similar to real

upper triangular matrix.
(say λ1,λ2, . . ,λn are eigenvalues of An×n (with repeats)
let x be normalised eigenvector of A to eigenvalue λ1 then
x∗x = 1 and Ax = λ1x, now from an orthonormal basis
with x and let this matrix be U1 = [x u2. .un] thus we
have U∗1AU1 = [λ1,⋆; 0,A1] for A1n−1×n−1 and as U1

is unitary we have eigenvalues of A1 are λ2, . . ,λn only
so lets commence the same procedure for A1n−1×n−1 we
get U2 join this to form V2 = [1, 0; 0,U2] then we get
(U1V2)

∗AU1V2 = [λ1,⋆,⋆; 0,λ2,⋆; 0, 0,A2] clearly U1V2

was unitary so proceeding similarly we get the theorem)

■ If A ∈ Mn(R) has complex eigenvalues
then it is similar to a matrix with diagonal
blocks of 1-by-1 and 2-by-2 only (has upper
triangular entries). Where 1-by-1 blocks are
real eigenvalue of A and 2-by-2 blocks are
[a b;−b a] for a+ ib eigenvalue.
(for An×n let λ = a+ ib and its eigenvector is x = u+ iv

then prove λ, x are eigenpairs so x, x are linearly indepen-
dent so are u, v and as Au = au− bv,Av = bu+ av

and if S = [u, v,S1]n×n be made non singular thus
S−1AS = [B,⋆; 0A1] for B = [a b;−b a]. )

• Every Symmetric matrix (A ∈ Mn(R)) is
orthogonally similar to diagonal matrix (D)

i.e. D = PTAP, PTP = I.

• Every Hermitian matrix (A) is unitarily
similar to diagonal matrix (D) i.e. D =

P∗AP, P∗P = I.

• A matrix A is normal iff A∗A = AA∗

• A matrix is Unitarily similar to diagonal
matrix iff it is Normal.

• A triangular normal matrix is Diagonal also a
block diagonal normal matrix has off diagonal
blocks =0.

• if A is normal then p(A) (specially A+ aI ,
a ∈ C) is normal. In other words if A is diago-
nalisable then so is P(A) ( note: even zero matrix is
considered as a diagonal matrix).
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2 Quadratic Form

• Q : Fn × Fn → F given by
n∑
i=0

n∑
j=0

aijxixj

where aij ∈ F a field.

• It can be represented as X′AX for X =

[x1, x2, . . , xn]T and Symmetric matrix A =

[A]ij =
1
2(aij +aji)

• Congruence relation (ARB) : if A = PTBP

for some non-singular P, A,B square.

• Matrices congruent to Symmetric matrices
are Symmetric.

• Quadratic forms are equivalent if the corre-
sponding matrices are congruent.

• Congruent matrices or equivalent Forms
have same Range.

• Every Symmetric matrix is congruent to a di-
agonal matrix. (same as orthogonally diagonalizable)

• Every n-rowed real Symmetric matrix with
rank r is congruent to a Diagonal matrix with
diagonal [1, ..1,−1, ..−1, 0, ..0] with 1 appearing
p times -1 appearing r− p times and 0 n− r

times.

• Canonical Form of real Quadratic Form:
for Q has matrix A and if P′AP =

diag[1, ..1,−1, .. − 1, 0, ..0] then X = PY which
transforms Q to y2

1 + .. + y2
p − y2

p+1 − .. − y2
r

for Real non singular matrix P.

• Number of positive terms in canonical form
is Index, difference of positive and negative
terms is Signature.

• Index and Signature are congruence invari-
ant.

• Two real Quadratic forms (symmetric matri-
ces) are orthogonally equivalent iff their matri-
ces have same eigenvalues and multiplicities.

• A Quadratic Form Q is:
■ positive definite if Q(X) ≥ 0 and
Q(X) = 0 ⇐⇒ X = 0
■ negative definite if Q(X) ≤ 0 and
Q(X) = 0 ⇐⇒ X = 0
■ positive semi-definite if Q(X) ≥ 0

■ negative semi-definite if Q(X) ≤ 0
■ or is indefinite
• if for a n dimensional Quadratic form
Rank=r and Signature=s then it is :
■ positive definite iff s = r = n.
■ negative definite iff −s = r = n.
■ positive semi-definite iff s = r < n.
■ negative semi-definite iff −s = r < n.
■ indefinite iff |s| ̸= r

• Now as real Symmetric matrices are diagion-
izable and have a canonical form we have:
■ Index = number of positive eigenvalues.
■ Rank = number of non zero eigenvalues.
■ Signature = no of +ve - no of -ve eigenval-

ues.
• from above we have for a real Quadratic form
Q with matrix A then Q is:
■ positive definite iff all eigenvalues are posi-

tive or > 0.
■ negative definite iff all eigenvalues are neg-

ative or < 0.
■ positive semi-definite iff at-least one eigen-

values is 0 and others > 0.
■ negative semi-definite iff at-least one eigen-

values is 0 and others < 0.
■ indefinite iff eigenvalues are -ve as well as

+ve.
■ every real non-singular matrix A = PS for P

orthogonal S positive definite
(S = Q′D1Q,D1 =

√
diagonalization(A′A),

P = AS′)
■ Q with matrix A is positive definite iff all

leading principal minors of A are positive.
■ A matrix A is positive definite =⇒ |A| > 0
■ A complex Quadratic form is hermitian if its

corresponding matrix is hermitian.
■ A Hermitian Form assumes only real values.
• if norm(A) =

∑
i,j |[A]ij|

2 then norm(A) =

trace(A∗A).

3 Jordan Form

• Canonical Form : Given a equivalence rela-
tion on set of matrices, the main problem is to
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find whether A and B belong to same equiva-
lence class. One classical way of doing this is
choosing a set of representative matrices such
that each matrix belong to only one class and
distinct members are of different classes. Such
a set of representatives is the Canonical Form
of such relation.

• Jordan form is the canonical form for relation
of Similarity.

• A matrix in Jordan form Consist of Jordan
blocks Jk(λ) which is a upper triangular ma-
trix of size k-by-k with diagonal entries λ and
super diagonal 1 and others 0 i.e.

Jk(λ) =


λ 1

λ 1
. . . . . .

λ 1
λ


k×k

• Jk(0)k+n = 0 for n ≥ 0 i.e. Jk(0) is nilpotent
matrix such that Jk(0)k = 0.

• rank(Jk(0)l) = max(k− l, 0)

• Convention: rank(Jk(0)0) = k

• if rk(A,λ) = rank(A− λI)k and
wk(A,λ) = rk−1(A,λ) − rk(A,λ) then in Jor-
dan Form of A :
■ wk(A,λ) = number of blocks with eigen-

value λ that has size at least k (use the fact for
every Jordan block of λ, A− λI is Similar to Jordan form
consisting of Jk(0) Jordan block instead of λ so as we
measure ranks each power decreases the rank of the block
by one if the block size is greater than the power.)

■ so w1(A,λ) = n− r1(A,λ) = number of Jor-
dan Blocks with eigenvalue λ = Geometric mul-
tiplicity of of λ as eigenvalue of A
■ wk(A,λ)−wk+1(A,λ) = number of blocks

of Size k

■ q : index of λ in A = smallest integer such
that rank(A − λI)q+1 = rank(A − λI)q =

rq+1(A,λ) = rq(A,λ)
■ w1(A,λ) +w2(A,λ). . +wq(A,λ) = Sum

of dimensions all Jordan blocks in λ = Alge-
braic Multiplicity of λ as eigenvalue of A
■ Weyr characteristic of A ∈ Mn associated

with λ ∈ C is
w(A,λ) = (w1(A,λ),w2(A,λ). . ,wq(A,λ))
■ Segre characteristic of A ∈ Mn associated

with λ ∈ C is
s(A,λ) = s1(A,λ) ≥ s2(A,λ), . . ≥ sw1(A,λ) >
0 where s is sizes of Jordan Blocks in λ as they
occur in Jordan form (non-increasing order)
■ for a given A,λ eigenvalue, If we arrange
w(A,λ) in dot form as rows (partitions: Fer-
rers diagram) then its columns are s(A,λ) and
Vise-versa.
• for An upper diagonal with [A]ii = 1,
[A]i,i+1 ̸= 0 then A is similar to Jn(1)
• if λ = 1 is the only eigenvalue of A then A is
similar to Ak

• in J Jordan form of A:
■ Total No of Jordan blocks = Total no of inde-

pendent eigenvectors.
■ No of Jordan blocks in λ = Dimension of

eigenspace of λ
■ Sum of sizes of Jordan blocks in λ = Alge-

braic Multiplicity.
• If An is non singular then A is similar to AT .
(use : for Jordon block Jn = Jn(λ) and Bn = Bn×n rever-
sal matrix (upside down identity) we have Jn = BnJ

′
nBn

as B−1
n = Bn we have JnRJ

′
n )

• If minimal polynomial of A =
∏k

i=1(t−λi)
ri

then largest Jordan block of λi in JCF of A is of
size ri.

4 Rational Form

• Jordan form of An is possible iff The char-
acteristics polynomial of A splits completely to
linear factors over F (i.e. (x− ai)

ni , ai ∈ F),
which may not be possible if there are irre-
ducible polynomials of degree more than 1 in
F[x], so to make canonical form under consid-
eration of these Matrices we arrive at Rational
form which uses the concept of Invariant sub-
spaces, Cyclic subspaces and Primary Decom-
position theorem.
• For given monic polynomial (characteris-
tic/minimal) p(x) = xn + an−1x

n−1 + .. +
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a1x + a0 a′is ∈ F of linear transform T :

V → V if there exist x such that Tx =

{x, T(x), T 2(x), .., Tn−1(x)} is a linear indepen-
dent set then The matrix of T with respect to
T−cyclic basis Tx is Companion matrix which
has same characteristic and minimal polyno-
mial = p(x) and is given by

CA =


0 . . . . 0 −a0
1 0 . . 0 −a1
0 1 . . 0 −a2
...

. . . . . .
...

...
0 . . 0 1 −an−1


• If p(x) = (p1(x))

n1(p2(x))
n2 ..(pk(x))

nk

and m(x) = (p1(x))
m1(p2(x))

m2 ..(pk(x))
mk

are characteristics and minimal polynomial of
linear transform T : V→ V where p′is are irre-
ducible in F of degree di respectively then :

■ Kpi
= {x : (pi(T))

k(x) = 0} is T invariant
Subspace of V

■ Kpi
= ker((pi(T))

mi) (Null space) , Kpi
∩

Kpj
= {0} for i ̸= j

■ Every Kpi
has a union T−cyclic basis as a

basis.

• From above and Primary decomposition the-
orem we have: for a linear transformation T :

V → V with matrix A has a basis in which A

is similar to
C1 . . 0
0 C2 . . 0
...

. . .
...

0 . . Ck


where Cis are companion matrices related to
minimal polynomial’s irreducible terms.

• Dimension of Kpi
= dini (di = degree of pi,

ni = power of pi in characteristic polynomial)

• Dim(Kpi
) = dimension of total blocks associ-

ated with pi

• number of blocks associated with pi =r1 =
1
di
[dim(V)− rank(pi(A))]

• number of blocks of size atleast i−by− i =
ri =

1
di
[rank(pi(A)i−1)− rank(pi(A)i)]

5 Mics Properties

• A has a block Bn in its block form iff it has
an n dimensional invariant space associated.

• Λn is a block matrix in which [Λ]i,j = 0 if
i ̸= j, Λii = λiIni

blocks and commutes with B

iff B is a block Diagonal conformal with Λ i.e.
iff

Λ =


λ1In1 0

λ2In2

. . .
0 λdInd

 ,

B =


Bn1 0

Bn2

. . .
0 Bnd


• Extremum of XTAX for constraint XTX = 1
occurs in eigenvalues of A.

• From above Extremum of real Quadratic
Form XTAX with constraints XTX = 1
is the largest eigenvalue of A vise-versa
Max{XTAX|A is symmetric, XTX = 1} = largest
eigenvalue of A.

• µ is a eigenvalue of p(A) iff µ = p(λ) for an
eigenvalue λ of A (where p(.) is a polynomial
over F).

• if λ is an eigenvalue of A then corresponding
eigenvector are non-zero columns of adj(A−

λI) (use full only if rank(A− λI) = n− 1).

• Coefficients of Characteristic polynomial of
A of degree n : n → 1,n − 1 →
−trace(A), constant→ (−1)ndet(A).

• A,B are simultaneously Diagonalizable iff
A,B communicate i.e. if D1 = S−1AS,D2 =

S−1BS for same S ⇐⇒ AB = BA. This even
holds for a family of Diagonalizable matrices.

• for Am×n[
Im A

0 In

]−1

=

[
Im −A

0 In

]
• For Am×nBn×m Eigenvalues of AB =
Eigenvalues of BA (including zero).

• Cauchy’s Determinant Identity : det(A +
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xyT ) = det(A)+yTadj(A)x

(so |I+ xy∗| = 1+y∗x)
• if S = A+ iB and non-singular then ∃τ ∈ R

such that T = A+ τB is non-singular.
(use that p(t) = det(A+ tB) has at most n zeroes in
complex plane so there is τ ∈ R such that p(τ) ̸= 0)

• Every real Matrix A similar over C to real
matrix B is similar over R. i.e. 0 ̸= A,B ∈
Mn(R) if S ∈ Mm(C) and B = S−1AS then
∃T ∈Mn(R) such that B = T−1AT

• If A is diagonalizable i.e. A = S−1DS then
p(A) = S−1p(D)S which makes evaluation of
p(A) easier.
• If An has distinct eigenvalues(diagonalizable)
and Commutes with B then B is Diagonalizable
(more precisely An,B are simultaneously diag-
onalizable) and B = p(A)

(use similarity, partition arguments and Lagrange inter-
polation poly which provides a polynomial map of n

distinct reals to any n reals ) for some polynomial
p(t) of degree at most n− 1
• If B is Diagonalizable then B has a square-
root i.e ∃A|A2 = B.
• If An,Bn are similar so are adj(A),adj(B).
• All Unitary Matrices Form a group in
GL(n, C) and compact in Cn2

.
• Singular Value Decomposition: Every matrix
Am,n can be written as A = UmSVn where
U,V are Unitary and S is the diagonal (with
zero) entries that are eigenvalue of A∗A or
AA∗.
• Reversal Matrix B is matrix that is up-side-
down of Identity and BA reverses row order
of A, AB reverses column order of A And
B = B∗ = B−1

• By Jordan Canonical form Every non-
singular matrix is similar to its Transpose
• A is similar to Ā iff A is Similar to a real
matrix (Same condition for A ∼ A∗)
• A is hermitian iff tr(A2) = tr(A∗A)

• if A is hermitian then, ∀x ∈ Cn :
■ x∗Ax is positive iff all eigenvalues are posi-

tive

■ x∗Ax is negative iff all eigenvalues are neg-
ative
■ if eigenvalues areλ1 ≤ λ2 ≤ . .λn and sub-

spaces {S} of Cn then λ1 = min(x
∗Ax
x∗x ),λn =

max(x
∗Ax
x∗x ),

λk = min
{dim(S)=k}

max
0̸=x∈S

x∗Ax

x∗x

= max
{dim(S)=n−(k+1)}

min
0̸=x∈S

x∗Ax

x∗x
• In general even if A ∈ Mn is not
hermitian with eigenvalues λ1,λ2. . ,λn then

min
x ̸=0

∣∣∣∣x∗Ax

x∗x

∣∣∣∣ ≤ |λi| ≤ max
x ̸=0

∣∣∣∣x∗Ax

x∗x

∣∣∣∣
(can be pure inequality also)
• Every Jordan matrix is similar to a complex
symmetric matrix so Every matrix is similar to
a complex symmetric matrix

6 Properties based on Matrix
Norm

• A function ||| · ||| : Mn→ R is a matrix norm
if:

1. |||A||| ≥ 0 Non-negative

1a. |||A||| = 0 ⇐⇒ A = 0 Positive

2. |||cA||| = |c| |||A||| ∀c ∈ C Homoge-
neous

3. |||A + B||| ≤ |||A||| + |||B||| Triangular
Inequality

4. |||AB||| ≤ |||A||| |||B||| Sub-
multiplicativity

• Clearly |||Ak||| ≤ |||A|||k now If A2 = A =⇒
|||A||| ≥ 1 in particular |||I||| ≥ 1
• Some Matrix norms:

■ l1 norm : ||A||1 =

n∑
i,j=1

|aij|

■ l2 norm : ||A||2 = |tr(A∗A)|

=
√

σ1(A)2 + . . +σn(A)2 =

 n∑
i,j=1

|aij|
2

1/2
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■ l∞ norm : ||A||∞ = max
1≤i,j≤n

|aij|

■ max Column sum norm

|||A|||1 = max
1≤j≤n

n∑
i=1

|aij|

■ max Row sum norm

|||A|||∞ = max
1≤i≤n

n∑
j=1

|aij|

■ Spectral norm |||A|||2 = σ1(A) = Largest Sin-
gular Value of A
• Matrix norm induced by vector norm : if || · ||
is norm in Cn then:

|||A||| = max
||x||=1

||Ax|| = max
x ̸=0

||Ax||

||x||

= max
||x||≤1

||Ax|| = max
||x||α=1

||Ax||

||x||
(for any other norm || · ||α in Cn) is a Matrix
norm with additional properties:
■ |||I||| = 1
■ ||Ay|| ≤ |||A||| ||y||

• For Any Matrix A ∈ Mn(C) we have |λ| ≤
ρ(A) = max(|λi|) ≤ |||A||| and if A is non-
singular then ρ(A) ≥ |λ| ≥ 1/|||A|||

• if there is Matrix norm such that |||A||| < 1
then lim

k→∞Ak = 0

• from above we have lim
k→∞Ak = 0 iff ρ(A) < 1

• For any given Matrix norm ||| · ||| we have
ρ(A) = lim

k→∞ |||Ak|||1/k

• Matrix power series
∞∑
k=0

akA
k converges if

ρ(A) ≤ R where R is the radius of conver-

gence of complex power series
∞∑
k=0

akz
k i.e. if

∃ ||| · ||| : |||A||| < R

• Matrix A is nonsingular if ∃||| · ||| | |||I−A||| <

1 and A−1 =

∞∑
k=0

(I−A)k

• From above we have if An = [aij] and
|aii| >

∑
j̸=i |aij| i.e. absolute value of diago-

nal elements are greater than sum of absolute
values of elements in corresponding rows (or
columns) then A is non singular

7 Properties associated to
Quadratic forms

• An if Hermitian iff :
■ x∗Ax if real for all x ∈ Cn

■ A is normal and all its eigenvalues are real
■ S∗AS is Hermitian ∀S ∈Mn

• from above A is +ve (-ve) semi-definite
(x∗AX ≥ 0 or ≤ 0) =⇒ A is hermitian
• if A is +ve definite (-ve) then A∗,A−1,AT , Ā
are all +ve definite (-ve).
• every Diagonal entry of +ve (-ve) definite
(semi) Matrix are +ve(non -ve, -ve) only.
• A positive semi-definite matrix is positive
definite iff it is non-singular
• for An = [aij] a +ve (-ve) semi-definite matrix
if akk = 0 then aik = aki = 0 ∀i ∈ {1, 2, . . ,n}
i.e. if diagonal entry is 0 then that row and col-
umn are 0.
• A is positive semi definite iff A = B∗B for
some B

• An is positive definite iff det(pk) > 0 ∀1 ≤
k ≤ n where pk is the k× k principle matrix
partitioned in A (along the diagonal).

8 Other Important Theorems

• Gersgorin Theorem: for a matrix An = [aij]

■ A Gersgorin Disk of A =
{z ∈ C : |z− aii| ≤ R′i(A) =

∑
j̸=i |aij|} for

i = 1, 2, . . ,n
■ Eigenvalues of A are all in the union of

Gersgorin Discs of A i.e.
{λi} ∈ G(A) =

⋃n
i=1{z ∈ C : |z−aii| ≤ R′i(A)}

■ if G(A) forms a disjoint set Gk(A) which is
union of k discs then Gk(A) contains exactly
k eigenvalues (counted according to algebraic
multiplicity).
■ The above statements remain true even if ra-

dius of the discs are C′j =
∑

i ̸=j |aij| as AT has
same eigenvalues.
■ from above we have
ρ(A) ≤ min

{
maxi

∑n
j=1 |aij|, maxj

∑n
i=1 |aij|

}
8



■ if p1,p2, ...,pn are positive real numbers
then
{λi} ∈

⋃n
i=1{z ∈ C : |z−aii| ≤ 1

pi

∑
j̸=i pj|aij|}

or
{λi} ∈

⋃n
i=1{z ∈ C : |z−ajj| ≤ pj

∑
i ̸=j

1
pi
|aij|}

as similar matrices have same eigenvalues
• A is Diagonally dominant if |aii| ≥∑

j̸=i |aij| and strictly diagonally dominant if
|aii| >

∑
j̸=i |aij|

• if A is strictly diagonally dominant then : A
is non-singular, if aii > 0 ∀i = 1, 2, ...,n then
every eigenvalue of A has a positive real part,
and if A is hermitian and aii > 0 ∀i = 1, 2, ...,n
then A is positive definite.

• An has nonzero diagonal entries, is diago-
nally dominant and |aii| > R

′
i for atleast n− 1

values of i then A is non singular.

• If every entry of A is non zero, A is diago-
nally dominant and |akk| > R′k for any k then
A is non singular

• if An has the property that ∀p,q ∈
{1, 2, ..,n} ∃ sequence of distinct inte-
gers p = k1,k2, ..,km = q such that

ak1k2 ,ak2k3 , ..akm−1km
are non zero, A is di-

agonally dominant and |akk| > R′k for any k

then A is non singular
• The above property states that if A is a prob-
ability/stochastic matrix then for each node in
directed graph of A is strongly connected (for
each pair of nodes there is a finite length di-
rected path to them or the stochastic matrix has
only one class and all states are communicat-
ing)
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