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1 Basic properties

e A(BC)=(AB)C

e tr(AB) = tr(BA)

e (AB)'=B’A’

e (AB)* =B*A*

e if A is Hermitian then iA is skew-Hermitian
and vise-versa.

e if A,B are symmetric, AB is symmetric iff
AB = BA.

o AA’,A’A are always symmetric.

e For any Square Matrix A:

m A+ A’is symmetric.

m A — A’ is skew- symmetric.

s A + A* is Hermitian.

m A — A* is skew-Hermitian .
® By preceding point any Square matrix can
be decomposed (by +) into symmetric - skew-
symmetric or Hermitian- skew-Hermitian pair.

e B’AB is symmetric or skew as is A
e B*AB is hermitian or skew as is A

e Determinant is a Multiliear (row), Alternat-
ing and Normalized Function on Matrices.

e Determinant of upper or lower triangle or di-
agonal matrix is equal to product of diagonal
elements.

e |AB|=|A[[B| = BA|

o [A/|=A]

o [A*[=|A|

e A is invertible iff |A| 0.

e A1 = adli\(lA) where adj(A) is the trans-

pose of co-factor matrix.
e B *"-A*'=B'(A—-B)A™"



e Cramer’s rule for a system of linear equa-

tions Ax = b where A is square and for
A<+ib
X = [X1,Xs,..,%n]T We have x; = | Al | where

A < b is obtained by replacing ith column of
Abyb.

e |adj(A)| = |[A|"* where A is an n X n ma-
trix

e adj(A*)=Adj(A)*

e adj(A™") =adj(A)"* =A/|A]

e adj(adj(A)) = |A]"2A

e adj(AB) = adj(B)adj(A) for non-singular
matrices A, B.

e A is orthogonal if A’A =1

e A is orthogonal —> |A|=+1 — invert-
ible.

e A is unitary if A*A =1
e if A,B are orthogonal then so are AB, BA.
Similar result follows in unitary case also.

e rank(A) = r iff all the r + 1 order minors
are zero i.e. if any one of rth order minor is
non zero then rank(A) > r.

e rank(A) =rank(A’) = rank(A*)
e Elementary transformation: exchange of
rows, multiplication of row by non zero con-

stant, addition of k multiple of a row to another
TOW.

e Elementary transformations doesn’t change
the rank of a matrix.

e Every elementary transformation has a cor-
responding non singular matrix which when
pre-multiplied to a given matrix gives the re-
spective operation.

e Normal form of a matrix : (Echelon form) A
matrix which can be partitioned into identity
and null matrices where the identity is present
in upper-left part.

e 3JP, Q non-singular square matrices such that
N = PAQ where A is any matrix and N is its
normal or Echelon form.

e rank(AB) < min({rank(A),rank(B)}).
e rank(A + B) < rank(A) + rank(B).

e Sylvester inequality :
for any matrices A xk, Bkxn

rank(AB) = rank(B) — dim(Im(B) Nnker(A))
so rank(A) + Rank(B) — k < rank(AB)
< min({rank(A), Rank(B)}).

(use: for Bx % 0, ABx = A(Bx) =0 iff x € Im(B) N
ker(A) and that dim(Im(B) Nnker(A)) < null(A) =
k—1(A) so —dim(Im(B) Nnker(A)) >r(A) —k.)

e Frobenius Inequality :
for Amxkerxp/ Cpxn

rank(AB) 4+ rank(BC) < rank(B) 4+ rank(ABC).

e rank(A) = rank(A*A)

e if all entries of A are real then rank(A’A) =
rank(A).

e if A is n-squared then :

m rank(A) =n = rank(adj(A)) =n.

m rank(A) =n—1 = rank(adj(A)) =1.

m rank(A) <n—1 = rank(adj(A)) =o
i.e. adj(A) = o. (use minors and cofactor definition
of Adj(A).)
e rank(A)> rank(A?)>.. >rank(A")>..
e null(A) < null(A?) <.. <null(A™) < ..
o if rank(A™) = rank(A™*1) then

m rank(AX) = rank(A™) Vk>m

s null(A¥) =null(A™) Vk>m
e Eigenvalues of Hermitian matrices are real.
(if A is eigenvalue then (Ax)* = x*A* =x*A = (Ax)* =
AX* 50 X*A*X = AX*X = Ax*X == A=A])
e Eigenvalues of Skew-Hermitian are purely
imaginary or zero.
e If A is Eigenvalue of Unitary matrix A then
Al =1
(if Ux = Ax then x*U*Ux = x*Ix = x*x but
(x*U*) (Ux) = AAX*x. )
e Real Eigenvalues of Orthogonal Matrices are
1,—1 only.
e Eigenvalues of A and A’ are same.
e Eigenvalues of triangular, diagonal matrices
are its diagonal elements.
e if A is an eigenvalue of non-singular matrix
A then

m A0



m 3 is the eigenvalue of A™*.
m AK is the eigenvalue of AK.
n % is the eigenvalue of adj(A).
e if {Ai} are eigenvalues of A then eigenvalues

of B =p(A) are of form p(A;) only.

e For A, with eigenvalues A4 A, .., AR
trace(A) = Y " A;, det(A) = [[iL, A and
trace(adj(A)) = 3, [ T4 Ai.

e If A = P *BP then A and B have same eigen-
values

e for square Matrices A, B eigenvalues of AB
and BA are same.

(use if ABx = Ax then BA(Bx) = B(ABx) = ABx so A is
eigenvalue of BA also and vis-a-viz.)

e Geometric multiplicity (no of eigenvectors
for an eigenvalue) < Algebraic multiplic-
ity(order of eigenvalue in characteristic polyno-
mial).

e A = P7*BP this Relation ARB (similarity) is
equivalence, determinant invariant, eigenvalue
invariant , trace invariant.

e A matrix is diagonalizable if it is similar to a
diagonal matrix

e A matric is diagonalizable iff for each of its
eigenvalue Geometric multiplicity = Algebraic
multiplicity.

e square matix A is diagonalizable iff minimal
polynomial of A splits into distinct linear fac-
tors in the given field i.e. minimal polynomial
of A is separable and has only linear irreducible
factors.

e A non-zero Nil-potent (A™ = 0) matrix has
eigenvalues as zero only.

e A non-zero Nil-potent matrix is never Diag-
onalizable.

(if A is diagonalizable then P"*AP = D so (P7*AP)™ =
PTAMP=0=D™ — D=othusA=o0)

e Schurs theorems:

m Every Square matrix A is Unitarily similar
to Upper triangular matrix whose diagonals are
eigenvalues of A (complex values included).

m If A € M (R) and has only real eigenval-
ues then it is real orthogonally similar to real

upper triangular matrix.

(say A, Az, .., An are eigenvalues of Ay xn (With repeats)
let x be normalised eigenvector of A to eigenvalue A, then
x*x = 1 and Ax = A;x, now from an orthonormal basis
with x and let this matrix be U; = [x u,..un] thus we
have UfAU; = [Ay,*; 0,A4] for Ay, ., and as U,
is unitary we have eigenvalues of A are A,,..,An only
so lets commence the same procedure for A,, . ., we
get U, join this to form V, = [1,0; o,U,] then we get
(U, V2)*AULV, =[Aq, %, %; 0,A;,%; 0,0,A;] clearly U,V,
was unitary so proceeding similarly we get the theorem)

mIf A € Mu(R) has complex eigenvalues
then it is similar to a matrix with diagonal
blocks of 1-by-1 and 2-by-2 only (has upper
triangular entries). Where 1-by-1 blocks are
real eigenvalue of A and 2-by-2 blocks are
[a b;—b alfor a+ib eigenvalue.

(for A xn let A = a4 ib and its eigenvector is x = u +iv
then prove A, X are eigenpairs so x, X are linearly indepen-
dent so are u,v and as Au = au—bv,Av = bu+ av
and if S = [u,V,S;]lhxn be made non singular thus
STTAS =[B,x; oA ]forB=[a b;—b al.)

e Every Symmetric matrix (A € Mu(R)) is
orthogonally similar to diagonal matrix (D)
ie. D=PTAP, PTP-L

e Every Hermitian matrix (A) is unitarily
similar to diagonal matrix (D) i.e. D =
P*AP, P*P =1.

e A matrix A is normal iff A*A = AA*

e A matrix is Unitarily similar to diagonal
matrix iff it is Normal.

e A triangular normal matrix is Diagonal also a
block diagonal normal matrix has off diagonal
blocks =o.

e if A is normal then p(A) (specially A 4 al,
a € C) is normal. In other words if A is diago-
nalisable then so is P(A) (note: even zero matrix is

considered as a diagonal matrix).



2 Quadratic Form

n n
e Q:F"xF" — Fgivenby > > aijxix;
i=0 j=o0
where ay; € F a field.
e It can be represented as X’AX for X =
[X1,X2,..,Xn]7 and Symmetric matrix A
[Alyy = 3 (ay; + aji)
e Congruence relation (ARB) : if A = PTBP
for some non-singular P, A, B square.

e Matrices congruent to Symmetric matrices
are Symmetric.

e Quadratic forms are equivalent if the corre-
sponding matrices are congruent.

e Congruent matrices or equivalent Forms
have same Range.

e Every Symmetric matrix is congruent to a di-
agonal matrix. (same as orthogonally diagonalizable)

e Every n-rowed real Symmetric matrix with
rank r is congruent to a Diagonal matrix with
diagonal [1, .1, —1,..— 1, 0,..0] with 1 appearing
p times -1 appearing r — p times and on —r
times.

e Canonical Form of real Quadratic Form:
for Q has matrix A and if P’AP =
diag(1,..1,—1,.. — 1,0,..0] then X = PY which
transforms Q to y; +..+ vy} — Y3, — - — Y7
for Real non singular matrix P.

e Number of positive terms in canonical form
is Index, difference of positive and negative
terms is Signature.

e Index and Signature are congruence invari-
ant.

e Two real Quadratic forms (symmetric matri-
ces) are orthogonally equivalent iff their matri-
ces have same eigenvalues and multiplicities.

e A Quadratic Form Q is:

m positive definite if Q(X) > o and
QX)=0 <= X=0

m negative definite if Q(X) < o and
Q(X)=0 <= X=0

m positive semi-definite if Q(X) > o

m negative semi-definite if Q(X) <o

m or is indefinite
e if for a n dimensional Quadratic form
Rank=r and Signature=s then it is :

m positive definite iff s = r=n.

m negative definite iff —s =1 =n.

m positive semi-definite iff s = r <n.

m negative semi-definite iff —s =1 <n.

m indefinite iff [s| T
e Now as real Symmetric matrices are diagion-
izable and have a canonical form we have:

m Index = number of positive eigenvalues.

m Rank = number of non zero eigenvalues.

m Signature = no of +ve - no of -ve eigenval-
ues.
e from above we have for a real Quadratic form
Q with matrix A then Q is:

m positive definite iff all eigenvalues are posi-
tive or > o.

m negative definite iff all eigenvalues are neg-
ative or < o.

m positive semi-definite iff at-least one eigen-
values is 0 and others > o.

m negative semi-definite iff at-least one eigen-
values is 0 and others < o.

» indefinite iff eigenvalues are -ve as well as
+ve.

m every real non-singular matrix A = PS for P
orthogonal S positive definite
(S=Q’'D,Q, D, = \/diagonalization(A’A),
P=AS’)

m Q with matrix A is positive definite iff all
leading principal minors of A are positive.

m A matrix A is positive definite =—> |A]>o0

m A complex Quadratic form is hermitian if its
corresponding matrix is hermitian.

m A Hermitian Form assumes only real values.
e if norm(A) = Zi,j [Aljj* then norm(A) =
trace(A*A).

3 Jordan Form

e Canonical Form : Given a equivalence rela-
tion on set of matrices, the main problem is to



find whether A and B belong to same equiva-
lence class. One classical way of doing this is
choosing a set of representative matrices such
that each matrix belong to only one class and
distinct members are of different classes. Such
a set of representatives is the Canonical Form
of such relation.

e Jordan form is the canonical form for relation
of Similarity.
e A matrix in Jordan form Consist of Jordan
blocks Jx(A) which is a upper triangular ma-
trix of size k-by-k with diagonal entries A and
super diagonal 1 and others o i.e.
S -

A1
Jk(A) = .
A1

A

kxk

e Jx(0)** ™ =oforn > oi.e. Jx(o) is nilpotent
matrix such that Jx (0)¥ = o.

e rank(Jx (o)) =max(k—1,0)

e Convention: rank(Jx(0)%) =k

o if 1 (A,A) =rank(A —AI)* and

Wi (A, A) = 1k_1(A,A) — 1 (A,A) then in Jor-
dan Form of A :

m Wi (A,A) = number of blocks with eigen-
value A that has size at least k (use the fact for
every Jordan block of A, A — Al is Similar to Jordan form
consisting of Jy (o) Jordan block instead of A so as we
measure ranks each power decreases the rank of the block
by one if the block size is greater than the power.)

m sow;(A,A) =n—r1;(A,A) = number of Jor-
dan Blocks with eigenvalue A = Geometric mul-
tiplicity of of A as eigenvalue of A

m Wi (A, A) —wi1(A,A) = number of blocks
of Size k

m  : index of A in A = smallest integer such
that rank(A — AI)9%1 = rank(A — AI)9 =
Tq+1(AA) =14(A,A)

n W (A A) + W, (A A).. +Wwq(A,A) = Sum
of dimensions all Jordan blocks in A = Alge-
braic Multiplicity of A as eigenvalue of A

m Weyr characteristic of A € My, associated

with A € C is
W(A,A) = (W (A, A), W, (A, A)..,Wwq(A,A))

m Segre characteristic of A € My, associated
with A € C is
S(AA) =s:(AA) > 8:(AA),.. > 8w, (AA)>
o where s is sizes of Jordan Blocks in A as they
occur in Jordan form (non-increasing order)

m for a given A, eigenvalue, If we arrange
w(A,A) in dot form as rows (partitions: Fer-
rers diagram) then its columns are s(A,A) and
Vise-versa.

e for A, upper diagonal with [A];; = 1,
[Alii+1 70 then A is similar to Jn (1)

e if A = 1 is the only eigenvalue of A then A is
similar to A¥

e in J Jordan form of A:

m Total No of Jordan blocks = Total no of inde-
pendent eigenvectors.

m No of Jordan blocks in A = Dimension of
eigenspace of A

m Sum of sizes of Jordan blocks in A = Alge-
braic Multiplicity.
e If A, is non singular then A is similar to AT.
(use : for Jordon block Jn = Jn (A) and By, = By, xn rever-
sal matrix (upside down identity) we have Jn = BnJ{Bn
as B;;* = B, we have JnRJ} )
e If minimal polynomial of A = [}, (t—A;)™
then largest Jordan block of A; in JCF of A is of
size Tj.

4 Rational Form

e Jordan form of A, is possible iff The char-
acteristics polynomial of A splits completely to
linear factors over F (i.e. (x — ai)™, a; € [F),
which may not be possible if there are irre-
ducible polynomials of degree more than 1 in
[Fix], so to make canonical form under consid-
eration of these Matrices we arrive at Rational
form which uses the concept of Invariant sub-
spaces, Cyclic subspaces and Primary Decom-
position theorem.

e For given monic polynomial (characteris-
tic/minimal) p(x) = x™ 4+ an_ X"+ .. +



a;x + a, ajs € [ of linear transform T :
V — V if there exist x such that T, =
{x,T(x), T*(x),.., T""*(x)} is a linear indepen-
dent set then The matrix of T with respect to
T—cyclic basis Tx is Companion matrix which
has same characteristic and minimal polyno-
mial = p(x) and is given by

o 0o —a,

1 0 .. 0 —aQ4
Ca=1|0 1 .. 0 —a

0 .. 0 1 —Qpn_q]

o If p(x) = (pa(x))™(p2(x))"=(prc(x))"*
and m(x) = (ps(x))™ (p2(x))™=.(px(x))™*
are characteristics and minimal polynomial of
linear transform T : V — V where p{s are irre-
ducible in FF of degree d; respectively then :

m Ky, = {x: (pi(T))*(x) = o} is T invariant
Subspace of V

n Ky, = Kker((pi(T))™) (Null space) , Ky, N
Kp,; ={o} for i #j

m Every K, has a union T—cyclic basis as a
basis.

e From above and Primary decomposition the-
orem we have: for a linear transformation T :
V — V with matrix A has a basis in which A
is similar to

C, .. o
o C, .. o
0 .. Ck

where Cjis are companion matrices related to
minimal polynomial’s irreducible terms.

e Dimension of Ky, = din; (di = degree of p;,
n; = power of p; in characteristic polynomial)

e Dim(K,,) = dimension of total blocks associ-
ated with p;

e number of blocks associated with p; =1, =
dldim(V) — rank(pi(A))]

e number of blocks pf size atleast i — by —i=
ri = g [rank(pi(A)'*) —rank(pi(A)")]

i

5 Mics Properties

e A has a block B, in its block form iff it has
an n dimensional invariant space associated.

® Ay is a block matrix in which [A];; = o if
i1#j, Aii = Ay, blocks and commutes with B
iff B is a block Diagonal conformal with A i.e.
iff

Addn, 0
Axln,
A= ’
o Adlnd
Bn, 0
an
B=
0 Bn,

e Extremum of XTAX for constraint XTX = 1
occurs in eigenvalues of A.

e From above Extremum of real Quadratic
Form XTAX with constraints X'X = 1
is the largest eigenvalue of A vise-versa
Max{XTAXJA is symmetric, XTX =1} = largest
eigenvalue of A.

e u is a eigenvalue of p(A) iff u = p(A) for an
eigenvalue A of A (where p(.) is a polynomial
over TF).

e if A is an eigenvalue of A then corresponding
eigenvector are non-zero columns of adj(A —
Al) (use full only if rank(A —AI) =n —1).

e Coefficients of Characteristic polynomial of
A of degree n n - Lnmn—1 —
—trace(A), constant — (—1)"det(A).

e A,B are simultaneously Diagonalizable iff
A, B communicate i.e. if D; = ST*AS,D, =
ST'BS for same S <= AB = BA. This even
holds for a family of Diagonalizable matrices.
e for Aixn

Im Al " [Im —A
o I, 1o I,
e For AmxnBnxm Eigenvalues of AB =

Eigenvalues of BA (including zero).
e Cauchy’s Determinant Identity : det(A +



xy') =det(A) +yTadj(A)x

(so I+xy*|=1+y"x)

e if S = A +iB and non-singular then 3t € R
such that T = A + B is non-singular.

(use that p(t) = det(A + tB) has at most n zeroes in
complex plane so there is T € R such that p(t) #0)

e Every real Matrix A similar over C to real
matrix B is similar over R. i.e. 0o # A,B €
Mp(R)if S € M (C) and B = S7*AS then
3T € M, (R) such that B=T*AT

e If A is diagonalizable i.e. A = S7'DS then
P(A) = ST *p(D)S which makes evaluation of
P(A) easier.

e If A, has distinct eigenvalues(diagonalizable)
and Commutes with B then B is Diagonalizable
(more precisely Ay, B are simultaneously diag-
onalizable) and B = p(A)

(use similarity, partition arguments and Lagrange inter-
polation poly which provides a polynomial map of n
distinct reals to any n reals ) for some polynomial
p(t) of degree at most n — 1

e If B is Diagonalizable then B has a square-
root i.e dA|A% = B.

e If Ay, B;, are similar so are adj(A), adj(B).

e All Unitary Matrices Form a group in
GL(n,C) and compact in cm.

e Singular Value Decomposition: Every matrix
Am,n can be written as A = U,y SV, where
U,V are Unitary and S is the diagonal (with
zero) entries that are eigenvalue of A*A or
AA*.

e Reversal Matrix B is matrix that is up-side-
down of Identity and BA reverses row order
of A, AB reverses column order of A And
B=B*=B"

e By Jordan Canonical form Every non-
singular matrix is similar to its Transpose

e A is similar to A iff A is Similar to a real
matrix (Same condition for A ~ A*)
e A is hermitian iff tr(A?) = tr(A*A)
e if A is hermitian then, Vx € C" :

m X*AXx is positive iff all eigenvalues are posi-
tive

m X*AXx is negative iff all eigenvalues are neg-
ative

m if eigenvalues areA, < A, < .. A, and sub-
spaces {S} of C™ then A, = min(XAx) A, =

A xX*X
X X
max(555),
. X*Ax
A = min max
{dim(S)=k}o4ES X*X

xX*Ax
= max min
{dim(S)=n—(k+1)}0sXES X*X
e In general even if A € M, is not
hermitian with eigenvalues A, A,.., A, then
X*AX X*AX
min < |Ail < max
x0 | X*X xs0 | X*X
(can be pure inequality also)

e Every Jordan matrix is similar to a complex
symmetric matrix so Every matrix is similar to
a complex symmetric matrix

6 Properties based on Matrix

Norm
e A function ||| ||| : Mn — R is a matrix norm
if:
1. [[JA]ll > 0 Non-negative
1a. [||A]ll=0 <= A =0 Positive

2. [[[eAlll = el [IIAlll Ve € € Homoge-

neous

3. A+ Bl < [I[AII+ Bl Triangular
Inequality

4. |[IABI]| < A 1B Sub-
multiplicativity

e Clearly AR < [[JAl* now If A2 =A =—
[IIA]l] > 1 in particular [|[I]|| > 1

e Some Matrix norms:

n
= Linorm: Al = 3 layl
i,j=1
m L, norm: [|A]l; = [tr(A*A)|
1/2

=0 (A)2+.. +on(A)2= Z |ay;l*

i,j=1



m I, norm: [|[Aflo = max |ajj]
1<i,j<n

m max Column sum norm
n

Alll; = max Qi
A ISanél ijl

m max Row sum norm
n

IAllle = max > |ay;|
1<i<n =t

m Spectral norm |[||A[||, = 04(A) = Largest Sin-
gular Value of A
e Matrix norm induced by vector norm : if || - |

is norm in C™ then:
[|AX]

23]
= max ||Ax|| = 1AX]]

IIx1<1 [Ixllo=1 |Ix]]
(for any other norm || - || in C™) is a Matrix
norm with additional properties:

m [[[T]]| =1

w [[Ay(l < Ayl
e For Any Matrix A € M (C) we have |A| <
p(A) = max(|Ai]) < ||A]ll and if A is non-
singular then p(A) > [A] > 1/[[|A]ll
e if there is Matrix norm such that [||A]]] < 1
then lim AX =o

[[IA]ll = max [[Ax|| = max
[Ix||=1 X0

k—o00

e from above we have lim AKX =oiff p(A) <1
k—o0

e For any given Matrix norm ||| - ||| we have

p(A) = Lim [[|AN]*/¥

k—o00

e Matrix power series Z arA¥ converges if
k=0

p(A) < R where R is the radius of conver-

gence of complex power series Z axz¥ ie. if

k=0

S : [Al<R

e Matrix A is nonsingular if 3||| - [|| | [[[T — A[l[ <

1and A" =) (I—A)*

k=0
e From above we have if A, [ai;] and

laii] > Zj 4 laij| i.e. absolute value of diago-
nal elements are greater than sum of absolute
values of elements in corresponding rows (or
columns) then A is non singular

7 Properties associated to

Quadratic forms

e A, if Hermitian iff :
m x*Ax if real for all x € C*
m A is normal and all its eigenvalues are real
m S*AS is Hermitian VS € My,
e from above A is +ve (-ve) semi-definite
x*AX >o0o0or <o0) = A is hermitian
e if A is +ve definite (-ve) then A*,A~1, AT A
are all +ve definite (-ve).
e every Diagonal entry of +ve (-ve) definite
(semi) Matrix are +ve(non -ve, -ve) only.

e A positive semi-definite matrix is positive
definite iff it is non-singular

o for A, =[ayj]a +ve (-ve) semi-definite matrix
if axx = o then ajx = axi = o Vi € {1,2,..,n}
i.e. if diagonal entry is o then that row and col-
umn are o.

e A is positive semi definite iff A = B*B for
some B

e A, is positive definite iff det(px) > o V1 <
k < n where py is the k X k principle matrix
partitioned in A (along the diagonal).

8 Other Important Theorems

e Gersgorin Theorem: for a matrix Ay, =[ai;]

m A Gersgorin Disk of A =
{z € C:lz—ail < R{(A) = };4layl} for
i=1,2,..,n

m Eigenvalues of A are all in the union of
Gersgorin Discs of A i.e.

A} € G(A) =UiL{z € C:|lz—aul < R{(A)}

m if G(A) forms a disjoint set G (A) which is
union of k discs then Gk (A) contains exactly
k eigenvalues (counted according to algebraic
multiplicity).

m The above statements remain true even if ra-
dius of the discs are Cj’ = 4 laij| as AT has
same eigenvalues.

m from above we have
p(A) < min {max; Y}, laijl, max; 31, lays!}



m if py, P2 .., Pn are positive real numbers
then
AteUrizeCilz—aul < o 2j4 Pilaijl)
or
AreUiizeCilz—ajl <pj Xiy ;i)
as similar matrices have same eigenvalues
e A is Diagonally dominant if |aii| >
2_j»laijl and strictly diagonally dominant if
laiil > 2.4 laj]
e if A is strictly diagonally dominant then : A
is non-singular, if aj; > o Vi = 1,2,..,m then
every eigenvalue of A has a positive real part,
and if A is hermitian and ai; >oVi=1,2,..,1
then A is positive definite.

e A, has nonzero diagonal entries, is diago-
nally dominant and |a;;| > R{ for atleast n — 1
values of i then A is non singular.

e If every entry of A is non zero, A is diago-
nally dominant and |axk| > R{< for any k then
A is non singular

e if A, has the property that Vp,q €
{1,2,.,m} 3 sequence of distinct inte-
gers p = kyKyeoKkm = g such that

ai, k,r Ok, ks Ok Lk, are NON zero, A is di-
agonally dominant and |ayi| > R}, for any k
then A is non singular

e The above property states that if A is a prob-
ability /stochastic matrix then for each node in
directed graph of A is strongly connected (for
each pair of nodes there is a finite length di-
rected path to them or the stochastic matrix has
only one class and all states are communicat-

ing)
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