Matrix Properties

Yashas.N

	Contents		1 Basic properties	
1	Basic properties	1	• $A(BC) = (AB)C$	
2	Quadratic Form	4	 tr(AB) = tr(BA) (AB)' = B'A' 	
3	Jordan Form	4	• $(AB)^* = B^*A^*$	
4	Rational Form	5	• if A is Hermitian then iA is skew-Hermitian and vise-versa.	
5	Mics Properties	6	• if A, B are symmetric, AB is symmetric iff $AB = BA$.	
6	Properties based on Matrix Norm	7	• AA', A'A are always symmetric.	
7 Properties associated to Quadratic		8	 For any Square Matrix A: A + A' is symmetric. A - A' is skew- symmetric. 	
8 Other Important Theorems 8		 A + A* is Hermitian. A - A* is skew-Hermitian . By preceding point any Square matrix can be decomposed (by +) into symmetric - skew- 		
Symbols used:			 be decomposed (by +) into symmetric - skew symmetric or Hermitian- skew-Hermitian pair. B'AB is symmetric or skew as is A B*AB is hermitian or skew as is A 	
	$\begin{array}{rcl} & \mbox{if} & \rightarrow & \mbox{if} & \mbox{add} n \mbox$	x A	 Determinant is a Multiliear (row), Alternating and Normalized Function on Matrices. Determinant of upper or lower triangle or diagonal matrix is equal to product of diagonal elements. AB = A B = BA A' = A A* = Ā A is invertible iff A ≠ o. A⁻¹ = adj(A)/ A where adj(A) is the transpose of co-factor matrix. B⁻¹ - A⁻¹ = B⁻¹(A - B)A⁻¹ 	

• Cramer's rule for a system of linear equations Ax = b where A is square and for $x = [x_1, x_2, ..., x_n]^T$ we have $x_i = \frac{|A \leftarrow_i b|}{|A|}$ where $A \leftarrow_i b$ is obtained by replacing i^{th} column of A by b.

• $|adj(A)| = |A|^{n-1}$ where A is an $n \times n$ matrix

- $adj(A^*) = Adj(A)^*$
- $\operatorname{adj}(A^{-1}) = \operatorname{adj}(A)^{-1} = A/|A|$
- $adj(adj(A)) = |A|^{n-2}A$
- adj(AB) = adj(B)adj(A) for non-singular matrices A, B.
- A is orthogonal if A'A = I
- A is orthogonal \implies $|A| = \pm 1 \implies$ invertible.
- **A** is unitary if $A^*A = I$

• if **A**, **B** are orthogonal then so are **AB**, **BA**. Similar result follows in unitary case also.

• rank(A) = r iff all the r + 1 order minors are zero i.e. if any one of r^{th} order minor is non zero then rank(A) > r.

• $rank(A) = rank(A') = rank(A^*)$

• Elementary transformation: exchange of rows, multiplication of row by non zero constant, addition of k multiple of a row to another row.

• Elementary transformations doesn't change the rank of a matrix.

• Every elementary transformation has a corresponding non singular matrix which when pre-multiplied to a given matrix gives the respective operation.

• Normal form of a matrix : (Echelon form) A matrix which can be partitioned into identity and null matrices where the identity is present in upper-left part.

• $\exists P, Q$ non-singular square matrices such that N = PAQ where A is any matrix and N is its normal or Echelon form.

- $rank(AB) \leq min(\{rank(A), rank(B)\}).$
- $rank(A + B) \leq rank(A) + rank(B)$.

• Sylvester inequality : for any matrices $A_{m \times k}$, $B_{k \times n}$

 $\begin{aligned} \operatorname{rank}(AB) &= \operatorname{rank}(B) - \operatorname{dim}(\operatorname{Im}(B) \cap \ker(A)) \\ & \operatorname{so} \operatorname{rank}(A) + \operatorname{Rank}(B) - k \leq \operatorname{rank}(AB) \\ & \leq \min(\{\operatorname{rank}(A), \operatorname{Rank}(B)\}). \end{aligned}$

(use: for $Bx \neq 0$, ABx = A(Bx) = 0 iff $x \in Im(B) \cap ker(A)$ and that $dim(Im(B) \cap ker(A)) \leq null(A) = k - r(A)$ so $-dim(Im(B) \cap ker(A)) \geq r(A) - k$.) • Frobenius Inequality : for $A_{m \times k}$, $B_{k \times p}$, $C_{p \times n}$

 $\texttt{rank}(AB) + \texttt{rank}(BC) \leq \texttt{rank}(B) + \texttt{rank}(ABC).$

• $rank(A) = rank(A^*A)$

• if all entries of **A** are real then rank(**A'A**) = rank(**A**).

- if **A** is n-squared then :
- $rank(A) = n \implies rank(adj(A)) = n.$
- $rank(A) = n 1 \implies rank(adj(A)) = 1.$

■ $rank(A) < n - 1 \implies rank(adj(A)) = 0$ i.e. $adj(A) \equiv 0$. (use minors and cofactor definition of Adj(A).)

- $rank(A) \ge rank(A^2) \ge ... \ge rank(A^n) \ge ...$
- $\operatorname{null}(A) \leq \operatorname{null}(A^2) \leq \ldots \leq \operatorname{null}(A^n) \leq \ldots$
- if $rank(A^m) = rank(A^{m+1})$ then
- $rank(A^k) = rank(A^m) \quad \forall k \ge m$
- $\operatorname{null}(\mathbf{A}^k) = \operatorname{null}(\mathbf{A}^m) \quad \forall k \ge m$
- Eigenvalues of Hermitian matrices are real. (if λ is eigenvalue then $(Ax)^* = x^*A^* = x^*A = (\lambda x)^* = \overline{\lambda}x^*$ so $x^*A^*x = \lambda x^*x = \overline{\lambda}x^*x \implies \overline{\lambda} = \lambda$)

• Eigenvalues of Skew-Hermitian are purely imaginary or zero.

• If λ is Eigenvalue of Unitary matrix **A** then $|\lambda| = 1$

(if $Ux = \lambda x$ then $x^*U^*Ux = x^*Ix = x^*x$ but $(x^*U^*)(Ux) = \overline{\lambda}\lambda x^*x$.)

• Real Eigenvalues of Orthogonal Matrices are 1,-1 only.

• Eigenvalues of **A** and **A'** are same.

• Eigenvalues of triangular, diagonal matrices are its diagonal elements.

• if λ is an eigenvalue of non-singular matrix **A** then

■ λ ≠ o

¹/_λ is the eigenvalue of A⁻¹.
λ^k is the eigenvalue of A^k.

• $\frac{|A|}{\lambda}$ is the eigenvalue of adj(A).

• if $\{\lambda_i\}$ are eigenvalues of **A** then eigenvalues of **B** = $\mathbf{p}(\mathbf{A})$ are of form $\mathbf{p}(\lambda_i)$ only.

• For A_n with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$ trace(A) = $\sum_{i=1}^{n} \lambda_{i}$, det(A) = $\prod_{i=1}^{n} \lambda_{i}$ and trace $(adj(\overline{A})) = \sum_{i=1}^{n} \prod_{j\neq i}^{n} \lambda_{i}$.

• If $A = P^{-1}BP$ then A and B have same eigenvalues

• for square Matrices A, B eigenvalues of AB and **BA** are same.

(use if $ABx = \lambda x$ then $BA(Bx) = B(ABx) = \lambda Bx$ so λ is eigenvalue of BA also and vis-a-viz.)

• Geometric multiplicity (no of eigenvectors for an eigenvalue) \leq Algebraic multiplicity(order of eigenvalue in characteristic polynomial).

• $A = P^{-1}BP$ this Relation ARB (similarity) is equivalence, determinant invariant, eigenvalue invariant, trace invariant.

• A matrix is diagonalizable if it is similar to a diagonal matrix

• A matric is diagonalizable iff for each of its eigenvalue Geometric multiplicity = Algebraic multiplicity.

• square matix **A** is diagonalizable iff minimal polynomial of A splits into distinct linear factors in the given field i.e. minimal polynomial of **A** is separable and has only linear irreducible factors.

• A non-zero Nil-potent ($A^m = 0$) matrix has eigenvalues as zero only.

• A non-zero Nil-potent matrix is never Diagonalizable.

(if **A** is diagonalizable then $P^{-1}AP = D$ so $(P^{-1}AP)^m =$ $P^{-1}A^mP = o = D^m \implies D \equiv o \text{ thus } A \equiv o$)

• Schurs theorems:

Every Square matrix A is Unitarily similar to Upper triangular matrix whose diagonals are eigenvalues of A (complex values included).

• If $\mathbf{A} \in M_{\mathbf{n}}(\mathbb{R})$ and has only real eigenvalues then it is real orthogonally similar to real

upper triangular matrix.

(say $\lambda_1, \lambda_2, ..., \lambda_n$ are eigenvalues of $A_{n \times n}$ (with repeats) let x be normalised eigenvector of A to eigenvalue λ_1 then $x^*x = 1$ and $Ax = \lambda_1 x_1$, now from an orthonormal basis with x and let this matrix be $U_1 = [x \ u_2..u_n]$ thus we have $U_1^*AU_1 = [\lambda_1, \star; o, A_1]$ for $A_{1_{n-1} \times n-1}$ and as U_1 is unitary we have eigenvalues of A_1 are $\lambda_2, ..., \lambda_n$ only so lets commence the same procedure for $A_{1_{n-1}\times n-1}$ we get U_2 join this to form $V_2 = [1, 0; 0, U_2]$ then we get $(U_1V_2)^*AU_1V_2 = [\lambda_1, \star, \star; o, \lambda_2, \star; o, o, A_2] \text{ clearly } U_1V_2$ was unitary so proceeding similarly we get the theorem)

• If $A \in M_n(\mathbb{R})$ has complex eigenvalues then it is similar to a matrix with diagonal blocks of 1-by-1 and 2-by-2 only (has upper triangular entries). Where 1-by-1 blocks are real eigenvalue of A and 2-by-2 blocks are $\begin{bmatrix} a & b; -b & a \end{bmatrix}$ for a + ib eigenvalue.

(for $A_{n \times n}$ let $\lambda = a + ib$ and its eigenvector is x = u + ivthen prove λ, \overline{x} are eigenpairs so x, \overline{x} are linearly independent so are u, v and as Au = au - bv, Av = bu + avand if $S = [u, v, S_1]_{n \times n}$ be made non singular thus $S^{-1}AS = [B, \star; oA_1]$ for $B = [a \ b; -b \ a]$.

• Every Symmetric matrix ($A \in M_n(\mathbb{R})$) is orthogonally similar to diagonal matrix (D) i.e. $D = P^T A P$, $P^T P = I$.

• Every Hermitian matrix (A) is unitarily similar to diagonal matrix (D) i.e. D = P^*AP , $P^*P = I$.

• A matrix **A** is normal iff $A^*A = AA^*$

• A matrix is Unitarily similar to diagonal matrix iff it is Normal.

• A triangular normal matrix is Diagonal also a block diagonal normal matrix has off diagonal blocks =**o**.

• if **A** is normal then $p(\mathbf{A})$ (specially $\mathbf{A} + \mathbf{aI}$, $\mathfrak{a} \in \mathbb{C}$) is normal. In other words if **A** is diagonalisable then so is P(A) (note: even zero matrix is considered as a diagonal matrix).

2 Quadratic Form

•
$$Q : \mathbb{F}^n \times \mathbb{F}^n \to \mathbb{F}$$
 given by $\sum_{i=0}^n \sum_{j=0}^n a_{ij} x_i x_j$

where $a_{ij} \in \mathbb{F}$ a field.

• It can be represented as X'AX for $X = [x_1, x_2, ..., x_n]^T$ and **Symmetric** matrix $A = [A]_{ij} = \frac{1}{2}(a_{ij} + a_{ji})$

• Congruence relation (ARB) : if $A = P^T B P$ for some non-singular P, A, B square.

• Matrices congruent to Symmetric matrices are Symmetric.

• Quadratic forms are equivalent if the corresponding matrices are congruent.

• Congruent matrices or equivalent Forms have same Range.

• Every Symmetric matrix is congruent to a diagonal matrix. (same as orthogonally diagonalizable)

• Every **n**-rowed real Symmetric matrix with rank **r** is congruent to a Diagonal matrix with diagonal [1, ..1, -1, ..-1, 0, ..0] with 1 appearing **p** times -1 appearing **r** - **p** times and 0 **n** - **r** times.

• Canonical Form of real Quadratic Form: for **Q** has matrix **A** and if P'AP =diag[**1**,..**1**,-**1**,..-**1**,**0**,..**0**] then **X** = **PY** which transforms **Q** to $y_1^2 + .. + y_p^2 - y_{p+1}^2 - .. - y_r^2$ for Real non singular matrix **P**.

• Number of positive terms in canonical form is **Index**, difference of positive and negative terms is **Signature**.

• Index and Signature are congruence invariant.

• Two real Quadratic forms (symmetric matrices) are orthogonally equivalent iff their matrices have same eigenvalues and multiplicities.

- A Quadratic Form **Q** is:
- positive definite if $Q(X) \ge o$ and

$$\mathbf{Q}(\mathbf{X}) = \mathbf{o} \iff \mathbf{X} = \mathbf{o}$$

• negative definite if $Q(X) \leq o$ and

 $Q(X) = o \iff X = o$

• positive semi-definite if $Q(X) \ge o$

- negative semi-definite if $Q(X) \leq o$
- or is indefinite

• if for a **n** dimensional Quadratic form Rank=**r** and Signature=**s** then it is :

- positive definite iff s = r = n.
- negative definite iff -s = r = n.
- positive semi-definite iff s = r < n.
- negative semi-definite iff -s = r < n.
- indefinite iff $|\mathbf{s}| \neq \mathbf{r}$
- Now as real Symmetric matrices are diagionizable and have a canonical form we have:

Index = number of positive eigenvalues.

- Rank = number of non zero eigenvalues.
- Signature = no of +ve no of -ve eigenvalues.
- from above we have for a real Quadratic form Q with matrix A then Q is:
- positive definite iff all eigenvalues are positive or > **o**.
- negative definite iff all eigenvalues are negative or < **o**.
- positive semi-definite iff at-least one eigenvalues is **o** and others > **o**.
- negative semi-definite iff at-least one eigenvalues is **o** and others < **o**.
- indefinite iff eigenvalues are -ve as well as +ve.
- every real non-singular matrix **A** = **PS** for **P** orthogonal **S** positive definite
- $(S = Q'D_1Q, D_1 = \sqrt{diagonalization(A'A)}, P = AS')$
- Q with matrix A is positive definite iff all leading principal minors of A are positive.
- A matrix **A** is positive definite \implies $|\mathbf{A}| > \mathbf{0}$
- A complex Quadratic form is hermitian if its corresponding matrix is hermitian.
- A Hermitian Form assumes only real values.

• if $\operatorname{norm}(A) = \sum_{i,j} |[A]_{ij}|^2$ then $\operatorname{norm}(A) = \operatorname{trace}(A^*A)$.

3 Jordan Form

• **Canonical Form** : Given a equivalence relation on set of matrices, the main problem is to

find whether A and B belong to same equivalence class. One classical way of doing this is choosing a set of representative matrices such that each matrix belong to only one class and distinct members are of different classes. Such a set of representatives is the Canonical Form of such relation.

 Jordan form is the canonical form for relation of Similarity.

• A matrix in Jordan form Consist of Jordan blocks $J_k(\lambda)$ which is a upper triangular matrix of size k-by-k with diagonal entries λ and super diagonal **1** and others **0** i.e.

$$J_k(\lambda) = \begin{bmatrix} \lambda & \mathbf{1} & & \\ & \lambda & \mathbf{1} & & \\ & & \ddots & \ddots & \\ & & & \lambda & \mathbf{1} \\ & & & & \lambda \end{bmatrix}_{k \times k}$$

• $J_k(o)^{k+n} = o$ for $n \ge o$ i.e. $J_k(o)$ is nilpotent matrix such that $J_k(o)^k = o$.

k

- $rank(J_k(o)^1) = max(k-l,o)$
- Convention: $rank(J_k(\mathbf{0})^{\mathbf{0}}) = k$
- if $\mathbf{r}_{\mathbf{k}}(\mathbf{A}, \mathbf{\lambda}) = \operatorname{rank}(\mathbf{A} \mathbf{\lambda}\mathbf{I})^{\mathbf{k}}$ and

 $w_k(\mathbf{A}, \lambda) = \mathbf{r}_{k-1}(\mathbf{A}, \lambda) - \mathbf{r}_k(\mathbf{A}, \lambda)$ then in Jordan Form of A :

• $w_k(A,\lambda)$ = number of blocks with eigenvalue λ that has size at least k (use the fact for every Jordan block of λ , $A - \lambda I$ is Similar to Jordan form consisting of $J_k(o)$ Jordan block instead of λ so as we measure ranks each power decreases the rank of the block by one if the block size is greater than the power.)

• so $w_1(\mathbf{A}, \lambda) = \mathbf{n} - \mathbf{r}_1(\mathbf{A}, \lambda) =$ number of Jordan Blocks with eigenvalue λ = Geometric multiplicity of of λ as eigenvalue of **A**

• $w_k(A, \lambda) - w_{k+1}(A, \lambda)$ = number of blocks of Size k

• **q** : index of λ in **A** = smallest integer such that $rank(A - \lambda I)^{q+1} = rank(A - \lambda I)^{q} =$ $\mathbf{r}_{q+1}(\mathbf{A}, \boldsymbol{\lambda}) = \mathbf{r}_{q}(\mathbf{A}, \boldsymbol{\lambda})$

• $w_1(A,\lambda) + w_2(A,\lambda) + w_q(A,\lambda) = Sum$ of dimensions all Jordan blocks in λ = Algebraic Multiplicity of λ as eigenvalue of **A**

with $\lambda \in \mathbb{C}$ is

 $w(A,\lambda) = (w_1(A,\lambda), w_2(A,\lambda), \dots, w_q(A,\lambda))$

• Segre characteristic of $A \in M_n$ associated with $\lambda \in \mathbb{C}$ is

 $s(\mathbf{A}, \lambda) = s_1(\mathbf{A}, \lambda) \ge s_2(\mathbf{A}, \lambda), \ldots \ge s_{w_1}(\mathbf{A}, \lambda) >$ **o** where **s** is sizes of Jordan Blocks in λ as they occur in Jordan form (non-increasing order)

• for a given A, λ eigenvalue, If we arrange $w(A,\lambda)$ in dot form as rows (partitions: Ferrers diagram) then its columns are $s(A, \lambda)$ and Vise-versa.

• for A_n upper diagonal with $[A]_{ii} = 1$,

 $[A]_{i,i+1} \neq 0$ then A is similar to $J_n(1)$

• if $\lambda = 1$ is the only eigenvalue of **A** then **A** is similar to A^k

• in J Jordan form of A:

Total No of Jordan blocks = Total no of independent eigenvectors.

• No of Jordan blocks in λ = Dimension of eigenspace of λ

• Sum of sizes of Jordan blocks in λ = Algebraic Multiplicity.

• If A_n is non singular then A is similar to A^T . (use : for Jordon block $J_n = J_n(\lambda)$ and $B_n = B_{n \times n}$ reversal matrix (upside down identity) we have $J_n = B_n J'_n B_n$ as $B_n^{-1} = B_n$ we have $J_n R J'_n$)

• If minimal polynomial of $\mathbf{A} = \prod_{i=1}^{k} (t - \lambda_i)^{r_i}$ then largest Jordan block of λ_i in JCF of A is of size r_i .

Rational Form 4

• Jordan form of A_n is possible iff The characteristics polynomial of A splits completely to linear factors over \mathbb{F} (i.e. $(x - a_i)^{n_i}, a_i \in \mathbb{F}$), which may not be possible if there are irreducible polynomials of degree more than 1 in $\mathbb{F}[x]$, so to make canonical form under consideration of these Matrices we arrive at Rational form which uses the concept of Invariant subspaces, Cyclic subspaces and Primary Decomposition theorem.

• For given monic polynomial (characteris-• Weyr characteristic of $A \in M_n$ associated tic/minimal) $p(x) = x^n + a_{n-1}x^{n-1} + ... + a_{n-1}x^{n-1} +$ $a_1 x + a_0 \ a'_i s \in \mathbb{F}$ of linear transform $T : V \to V$ if there exist x such that $T_x = \{x, T(x), T^2(x), ..., T^{n-1}(x)\}$ is a linear independent set then The matrix of T with respect to T-cyclic basis T_x is Companion matrix which has same characteristic and minimal polynomial = p(x) and is given by

$$C_{A} = \begin{bmatrix} 0 & \dots & \dots & 0 & -a_{0} \\ 1 & 0 & \dots & 0 & -a_{1} \\ 0 & 1 & \dots & 0 & -a_{2} \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & 1 & -a_{n-1} \end{bmatrix}$$

• If $p(x) = (p_1(x))^{n_1}(p_2(x))^{n_2}...(p_k(x))^{n_k}$ and $m(x) = (p_1(x))^{m_1}(p_2(x))^{m_2}...(p_k(x))^{m_k}$ are characteristics and minimal polynomial of linear transform $T: V \rightarrow V$ where p'_is are irreducible in \mathbb{F} of degree d_i respectively then :

• $K_{p_i} = \{x : (p_i(T))^k(x) = o\}$ is T invariant Subspace of V

• $K_{p_i} = ker((p_i(T))^{m_i})$ (Null space) , $K_{p_i} \cap K_{p_j} = \{o\}$ for $i \neq j$

• Every K_{p_i} has a union T-cyclic basis as a basis.

• From above and Primary decomposition theorem we have: for a linear transformation $T : V \rightarrow V$ with matrix A has a basis in which A is similar to

$\begin{bmatrix} C_1 \end{bmatrix}$		••	0
0	C2	••	0
:		·	:
o		••	C_k

where $C_i s$ are companion matrices related to minimal polynomial's irreducible terms.

 Dimension of K_{pi} = d_in_i (di = degree of p_i, n_i = power of p_i in characteristic polynomial)

• $Dim(K_{p_i}) = dimension of total blocks associated with p_i$

• number of blocks associated with $p_i = r_1 = \frac{1}{d_i}[dim(V) - rank(p_i(A))]$

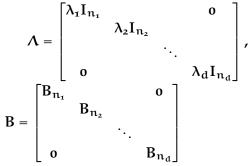
• number of blocks of size atleast $i - by - i = r_i = \frac{1}{d_i} [rank(p_i(A)^{i-1}) - rank(p_i(A)^i)]$

Mics Properties

5

• A has a block B_n in its block form iff it has an n dimensional invariant space associated.

• Λ_n is a block matrix in which $[\Lambda]_{i,j} = o$ if $i \neq j$, $\Lambda_{ii} = \lambda_i I_{n_i}$ blocks and commutes with B iff B is a block Diagonal conformal with Λ i.e. iff



• Extremum of $X^T A X$ for constraint $X^T X = 1$ occurs in eigenvalues of A.

• From above Extremum of real Quadratic Form $X^T A X$ with constraints $X^T X = \mathbf{1}$ is the largest eigenvalue of A vise-versa Max{ $X^T A X$ |A is symmetric, $X^T X = \mathbf{1}$ } = largest eigenvalue of A.

• μ is a eigenvalue of $p(\mathbf{A})$ iff $\mu = p(\lambda)$ for an eigenvalue λ of \mathbf{A} (where p(.) is a polynomial over \mathbb{F}).

• if λ is an eigenvalue of **A** then corresponding eigenvector are non-zero columns of $adj(A - \lambda I)$ (use full only if $rank(A - \lambda I) = n - 1$).

• Coefficients of Characteristic polynomial of A of degree $n : n \rightarrow 1, n - 1 \rightarrow -trace(A), constant \rightarrow (-1)^n det(A).$

• **A**, **B** are simultaneously Diagonalizable iff **A**, **B** communicate i.e. if $D_1 = S^{-1}AS$, $D_2 = S^{-1}BS$ for same $S \iff AB = BA$. This even holds for a family of Diagonalizable matrices.

• for $A_{m \times n}$ $\begin{bmatrix} I_m & A \\ 0 & I_n \end{bmatrix}^{-1} = \begin{bmatrix} I_m & -A \\ 0 & I_n \end{bmatrix}$

• For $A_{m \times n} B_{n \times m}$ Eigenvalues of AB = Eigenvalues of **BA** (including zero).

• Cauchy's Determinant Identity : det(A +

 $xy^{\mathsf{T}}) = det(\mathsf{A}) + y^{\mathsf{T}}adj(\mathsf{A})x$ (so $|I + xy^*| = 1 + y^*x$)

• if S = A + iB and non-singular then $\exists \tau \in \mathbb{R}$ such that $T = A + \tau B$ is non-singular.

(use that p(t) = det(A + tB) has at most n zeroes in complex plane so there is $\tau \in \mathbb{R}$ such that $p(\tau) \neq 0$)

• Every real Matrix **A** similar over **C** to real matrix **B** is similar over **R**. i.e. $\mathbf{o} \neq \mathbf{A}, \mathbf{B} \in M_n(\mathbf{R})$ if $\mathbf{S} \in M_m(\mathbf{C})$ and $\mathbf{B} = \mathbf{S}^{-1}\mathbf{A}\mathbf{S}$ then $\exists \mathsf{T} \in M_n(\mathbf{R})$ such that $\mathbf{B} = \mathsf{T}^{-1}\mathbf{A}\mathsf{T}$

• If **A** is diagonalizable i.e. $\mathbf{A} = \mathbf{S}^{-1}\mathbf{D}\mathbf{S}$ then $\mathbf{p}(\mathbf{A}) = \mathbf{S}^{-1}\mathbf{p}(\mathbf{D})\mathbf{S}$ which makes evaluation of $\mathbf{p}(\mathbf{A})$ easier.

• If A_n has distinct eigenvalues(diagonalizable) and Commutes with B then B is Diagonalizable (more precisely A_n , B are simultaneously diagonalizable) and B = p(A)

(use similarity, partition arguments and Lagrange interpolation poly which provides a polynomial map of n distinct reals to any n reals) for some polynomial p(t) of degree at most n - 1

• If **B** is Diagonalizable then **B** has a squareroot i.e $\exists A | A^2 = B$.

• If A_n, B_n are similar so are adj(A), adj(B).

• All Unitary Matrices Form a group in $GL(n, \mathbb{C})$ and compact in \mathbb{C}^{n^2} .

• Singular Value Decomposition: Every matrix $A_{m,n}$ can be written as $A = U_m SV_n$ where U, V are Unitary and S is the diagonal (with zero) entries that are eigenvalue of A^*A or AA^* .

• Reversal Matrix **B** is matrix that is up-sidedown of Identity and **BA** reverses row order of **A**, **AB** reverses column order of **A** And $\mathbf{B} = \mathbf{B}^* = \mathbf{B}^{-1}$

• By Jordan Canonical form Every nonsingular matrix is similar to its Transpose

• **A** is similar to \overline{A} iff **A** is Similar to a real matrix (Same condition for $A \sim A^*$)

- A is hermitian iff $tr(A^2) = tr(A^*A)$
- if **A** is hermitian then, $\forall x \in \mathbb{C}^n$:

• *x**A*x* is positive iff all eigenvalues are positive

• *x**A*x* is negative iff all eigenvalues are negative

• if eigenvalues $\operatorname{are}\lambda_{1} \leq \lambda_{2} \leq ..\lambda_{n}$ and subspaces $\{S\}$ of \mathbb{C}^{n} then $\lambda_{1} = \min(\frac{x^{*}Ax}{x^{*}x}), \lambda_{n} = \max(\frac{x^{*}Ax}{x^{*}x}), \lambda_{n} = \max(\frac{x^{*}Ax}{x^{*}x}), \lambda_{n} = \max(\frac{x^{*}Ax}{x^{*}x})$

$$\lambda_{k} = \min_{\{\dim(S)=k\} \text{ of } x \in S} \max_{x \in X} \frac{x^{*}Ax}{x^{*}x}$$
$$= \max_{\{\Pi_{i} \in S\}} \min_{x \in X} \frac{x^{*}Ax}{x^{*}x}$$

 $\begin{aligned} &\{\dim(S)=n-(k+1)\}_{0\neq x\in S} x^*x \\ \bullet \text{ In general even if } A \in M_n \text{ is not} \\ &\text{hermitian with eigenvalues } \lambda_1, \lambda_2..., \lambda_n \text{ then} \\ &\min_{x\neq 0} \left| \frac{x^*Ax}{x^*x} \right| \leq |\lambda_i| \leq \max_{x\neq 0} \left| \frac{x^*Ax}{x^*x} \right| \\ &\text{(can be pure inequality also)} \end{aligned}$

• Every Jordan matrix is similar to a complex symmetric matrix so **Every matrix is similar to a complex symmetric matrix**

6 Properties based on Matrix Norm

• A function $||| \cdot ||| : M_n \to \mathbb{R}$ is a matrix norm if:

1. $|||A||| \ge 0$ Non-negative

1a.
$$|||A||| = 0 \iff A = 0$$
 Positive

- 2. $|||cA||| = |c| |||A||| \quad \forall c \in \mathbb{C}$ Homogeneous
- 3. $|||\mathbf{A} + \mathbf{B}||| \leq |||\mathbf{A}||| + |||\mathbf{B}|||$ Triangular Inequality
- 4. $|||AB||| \leq |||A||| |||B|||$ Submultiplicativity

• Clearly $|||A^k||| \le |||A|||^k$ now If $A^2 = A \implies$ $|||A||| \ge 1$ in particular $|||I||| \ge 1$

• Some Matrix norms:

•
$$l_{1} \operatorname{norm} : ||A||_{1} = \sum_{i,j=1}^{n} |a_{ij}|$$

• $l_{2} \operatorname{norm} : ||A||_{2} = |\operatorname{tr}(A^{*}A)|$
 $= \sqrt{\sigma_{1}(A)^{2} + \ldots + \sigma_{n}(A)^{2}} = \left(\sum_{i,j=1}^{n} |a_{ij}|^{2}\right)^{1/2}$

•
$$l_{\infty}$$
 norm: $||A||_{\infty} = \max_{k \ge 0} ||a_{1j}|$
• max Column sum norm
 $||A|||_{1} = \max_{x \le j \le n} ||a_{1j}|$
• max Row sum norm
 $||A|||_{2} = \max_{x \le j \le n} ||a_{1j}|$
• max Row sum norm
 $||A|||_{2} = \max_{x \le j \le n} ||a_{1j}|$
• Spectral norm $||A|||_{2} = \sigma_{1}(A) = \text{LargestSim}$
of the mabove A is +ve (-ve) semi-definite
($x \ge 0 \text{ or } \le 0$) $\implies A$ is hermitian $\forall S \in M_{n}$
• from above A is +ve (-ve) bern- $A, A^{-\tau}, A^{-\tau$

 $\left| \begin{array}{c} \rho(\mathbf{A}) \leq \min\left\{ \max_{i} \sum_{j=1}^{n} |a_{ij}|, \max_{j} \sum_{i=1}^{n} |a_{ij}| \right\} \right.$

• if $p_1, p_2, ..., p_n$ are positive real numbers $\mathfrak{a}_{k_1k_2}, \mathfrak{a}_{k_2k_3}, ... \mathfrak{a}_{k_{m-1}k_m}$ are non zero, A is diagonally dominant and $|a_{kk}| > R'_k$ for any k then $\{\lambda_i\} \in \bigcup_{i=1}^n \{z \in \mathbb{C} : |z - a_{ii}| \le \frac{1}{p_i} \sum_{j \neq i} p_j |a_{ij}|\}$ then A is non singular • The above property states that if A is a prob- $\begin{array}{l} \{\lambda_i\} \in \bigcup_{i=1}^n \{z \in \mathbb{C} : |z - a_{jj}| \leq p_j \sum_{i \neq j} \frac{1}{p_i} |a_{ij}| \}\\ \text{as similar matrices have same eigenvalues} \end{array}$ ability/stochastic matrix then for each node in directed graph of A is strongly connected (for • A is Diagonally dominant if $|a_{ii}|$ each pair of nodes there is a finite length di- \geq $\sum_{i\neq i} |a_{ij}|$ and strictly diagonally dominant if rected path to them or the stochastic matrix has $|\mathfrak{a}_{ii}| > \sum_{j \neq i} |\mathfrak{a}_{ij}|$ only one class and all states are communicating) • if **A** is strictly diagonally dominant then : **A** is non-singular, if $a_{ii} > 0 \quad \forall i = 1, 2, ..., n$ then every eigenvalue of A has a positive real part, References and if **A** is hermitian and $a_{ii} > 0 \forall i = 1, 2, ..., n$ then A is positive definite. [1] Vasishtha A.R., Vasishtha A.K.: Matrices, Krishna Educational Publishers, 3, (2018). • A_n has nonzero diagonal entries, is diagonally dominant and $|a_{ii}| > R'_i$ for atleast n - 1[2] Roger A.H., Charles R.J.: Matrix Analysis, values of *i* then A is non singular. Cambridge University press,2,(2013). • If every entry of A is non zero, A is diago-[3] Stephen H. Friedberg, Arnold J. Insel, nally dominant and $|a_{kk}| > R'_k$ for any k then Lawrence E. Spence .: Linear algebra Pear-A is non singular son Education,4,(2003). • if A_n has the property that $\forall p, q$ \in

q such that

 $\{1, 2, .., n\}$ \exists sequence of distinct inte-

gers $p = k_1, k_2, .., k_m =$

[4] Fuzhen Zhang.:Matrix Theory Basic Results and Techniques, Springer,2,(2011).

9