Linear Algebra

Yashas.N

Contents

1	Basic Linear equations theory	1	
2	Vector Spaces	2	
3	Linear Transform	3	
4	Determinant	5	
5	Diagonalizability	5	
6	Projections or Idempotent Operators	6	
7	Jordan Form	7	
8	Rational Form	8	
9	Inner Product Spaces	8	
10	Forms	8	
11	Bilinear Forms	8	
12	Algebra	8	
O Symbols and notations used			
	$\begin{bmatrix} A_{m \times n} \to m \times n \text{ matrix.} \\ A_n \to n \times n \text{ matrix.} \end{bmatrix}$		
	$n_{\eta} \rightarrow n \wedge n$ mann.		

 $A_n \rightarrow n \times n$ matrix. $\sim \rightarrow$ the relation below $A \sim B \implies A = P^{-1}AP.$

 $iff \rightarrow \iff$

1

Basic Linear equations theory

Every $A_{m \times n} = PR_{m \times n}$ for Row reduced		
Echelon form R and an invertible matrix P		
let this relation be denoted by \mathbf{A} rrec \mathbf{R}		
(if $\mathfrak{m} < \mathfrak{n}$ then the homogeneous system)		
$A_{m \times n} X = 0$ has a non trivial solution		
i.e. if the number of equations is less than		
the number of variables then the Homoge-		
neous System has a non trivial solution		
,		
Inverse Properties		
\blacksquare A_n has inverse A^{-1} iff $AX = 0$ has only		
trivial solutions.		
\blacksquare A is invertible iff A rrec I (identity)		
■ if Elementary matrices are the corre-		
sponding matrices of elementary transforms		
(change of rows, addition of one row to another, mul-		
tiplication of a row with an non zero constant) then		
A is invertible iff A is product of elementary		
matrices.		
Echelon Form		
every $A_{m \times n} = P_m R Q_n$ for P, Q invert-		
ible and \mathbf{R} is such that it has an identity in		
upper corner and all other entries zero i.e.		
$\begin{bmatrix} \mathbf{R} = \begin{bmatrix} \mathbf{I}_{\mathbf{k}} & 0 \\ 0 & 0 \end{bmatrix} \text{ for some identity } \mathbf{I}_{\mathbf{k}}.$		
Consistency		

System of linear equations :

 $A_{m \times n} X_{n \times 1} = b_{1 \times m}$ for $b \neq o$ is consistent (has a solution) iff the row reduced Echelon form of augmented matrix [A : b] has same number of non zero rows as in row reduced echelon form of A.

2 Vector Spaces

Definition

 $(\mathbf{V}, \mathbb{F}, +)$ denoted by $\mathbf{V}(\mathbb{F})$: \mathbf{V} is vector space over Field \mathbb{F} if $\blacksquare (\mathbf{V}, +)$ is a commutative group, for every $\alpha, \beta \in \mathbb{F}$ and every $\mathbf{a}, \mathbf{b} \in \mathbf{V}$ $\blacksquare \mathbf{1a} = \mathbf{a}$ where $\mathbf{1} \in \mathbb{F}$ is multiplicative identity of \mathbb{F} . $\blacksquare (\alpha + \beta)\mathbf{a} = \alpha\mathbf{a} + \beta\mathbf{a}$ $\blacksquare \alpha(\mathbf{a} + \mathbf{b}) = \alpha\mathbf{a} + \alpha\mathbf{b}$ $\blacksquare (\alpha\beta)\mathbf{a} = \alpha(\beta\mathbf{a})$ The elements of \mathbf{V} are called **vectors** and elements of \mathbb{F} are called **scalars**

Span

if $K = \{v_1, v_1, \dots, v_n\} \subseteq V(\mathbb{F})$ then span of K is the set $\{\sum \alpha_i v_i | v_i \in K, \alpha_i \in \mathbb{F}\}$ i.e. is all the formal sums from set K with \mathbb{F} . This is denoted by span(K).

Subspace

A subset S of vector space $V(\mathbb{F})$ is a subspace if $S(\mathbb{F})$ is a vector space by same operations as in V

■ given any $K \subseteq V(F)$ span(K) is a subspace of V(F).

S is a subspace of **V** iff $\alpha a + b \in S \forall a, b \in S$ and $\alpha \in \mathbb{F}$ the underlying field of both spaces

■ Intersection of subspaces (arbitrary) is again a subspace i.e. if W_1, W_2 are subspaces of V then $W_1 \cap W_2$ is also a subspace of V.

■ Union of subspaces may not be a subspace

■ Union of two subspaces is a subspace iff one of them is contained in another i.e. for W_1, W_2 subspaces of $V, W_1 \cup W_2$ is a subspace iff $W_1 \subset W_2$ or $W_2 \subset W_1$.

(note: this is not the same in case of 3 subspaces : consider $Z_2 \times Z_2(Z_2)$ vector space here $Z_2 \times Z_2 = span((0,1)) \cup span((1,0)) \cup span((1,1)).$)

Dependence

a set of vectors $\{v_1, v_1, ..., v_n\} \subseteq V(\mathbb{F})$ are called Linearly independent in V if $\alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n = 0 \implies$ all $\alpha'_i s$ are o and no other choice is left. Other wise the subset is called linearly dependent

Basis

a subset K of V is a spanning set of V if span(K) = V.

A Linearly independent spanning set of $V(\mathbb{F})$ is called a Basis of V.

Dimension

In a given vector space $V(\mathbb{F})$.

■ The number of elements in Basis is constant $n \in \mathbb{Z}^+$.

■ if a set contains more vectors than the Basis set of a vector space then it is linearly dependent.

■ if a linearly independent set contains exactly the same number of elements as a Basis then it is also a Basis.

These above points leads us to the Definition : Number of elements n in The Basis set of $V(\mathbb{F})$ is unique and is called the Dimension of $V(\mathbb{F})$ denoted by $\dim(V) = n$.

if $W_1, W_2 \subseteq V$ are subspaces then $\blacksquare \dim(W_i) \leq V$. $\blacksquare \det W_1 + W_2 = \operatorname{span}(W_1, W_2)$ then

 $\dim(W_1 + W_2) = \dim(W_1) + \dim(W_2)$ $- \dim(W_1 \cap W_2).$

(note: there cannot be a definite formula for $dim(\sum_{i=1}^{n} W_i)$ using dimensions of W'_is and their counterparts (union, intersections) if $n \ge 3$.)

Direct sum

Now if for two subspaces W_1, W_2 of V if $W_1 \cap W_2 = \emptyset$ we write their sum $W_1 + W_2$ as $W_1 \oplus W_2$

■ If $V = W_1 \oplus W_2$ for some non zero subspaces W_1, W_2 then for each vector $v \in V$

can be written **uniquely** as $v = w_1 + w_2$ for unique $w_1 \in W_1$ and $w_2 \in W_2$.

Matrix Representation of vectors

Fix a basis $\beta = \{b_1, b_2, ..., b_n\}$ for a vector space $V(\mathbb{F})$ then as B spans V every vector $x \in V$ can be written as $x = x_1b_1 + x_2b_2 + ...x_nb_n$ for $x_i \in \mathbb{F}$ and $b_i \in B$ and this representation is unique so each vector can be associated with a column matrix $x_\beta = [x_1 x_2 ... x_n]^T$

Change of Basis Matrix

Given two basis $\beta = \{b_1, b_2, ..., b_n\}, \beta' = \{b'_1, b'_2, ..., b'_n\}$ for V Then one can change the representation of $x \in V$ from $[x]_\beta$ to $[x]_{\beta'}$ by

 $[x]_{\beta'} = P[x]_{\beta}$

where P_n is a invertible matrix given by if $b_j = p_{1j}b'_1 + p_{2j}b'_2 + ... + p_{nj}b'_n$ then $[p_{1j} p_{2j}...p_{nj}]^T$ forms the jth column of P.

3 Linear Transform

Definition

a map $T : V(\mathbb{F}) \to W(\mathbb{F})$ (between vector spaces with same underlying field) is called a linear transform if for every $v, u \in V$ and $\alpha \in F$

- $\blacksquare \mathsf{T}(v+u) = \mathsf{T}(v) + \mathsf{T}(u)$
- $\blacksquare \mathsf{T}(\alpha v) = \alpha \mathsf{T}(\mathbf{V})$

Range and Null space

For a linear transform
$$T : V \rightarrow W$$
:
a Range Space of T denoted by $R(T) \subseteq W$
is $\{w|w = T(v) \text{ for some } v \in V\}$
b Null Space of T denoted by $N(T) \subseteq V$ is
 $\{v|T(v) = o \in W\}$
b Both of them are subspaces of the under-
lying space.
b T is one-one iff $N(T) = \{o\}$.
b T is onto if $R(T) = W$
b if dim(V) = dim(W) and $N(T) = \{o\}$

then **T** is onto thus **T** is bijective.

if **T**, **U** are both liner transforms from $V \rightarrow W$ and if both agree on a basis of **V** (i.e. $T(b_i) = U(b_i) \forall i$ for some basis $\beta = \{.., b_i, ..\}$ of **V**) then both of then are same i.e. $T \equiv U$.

Rank Nullity Theorem

for a linear transform $T : V(\mathbb{F}) \rightarrow W(\mathbb{F})$ if rank(T) = dim(R(T)) and nullity(T) = dim(N(T)) then

rank(T) + nullity(T) = dim(V)

(this is just an analogue of $\mathbf{1}^{st}$ isomorphism theorems of Groups)

Matrix of Linear Transform

Given a linear transform $T : V \rightarrow W$, basis $\beta = \{b_1, b_2, ..., b_n\}$ of V and basis $\beta' = \{b'_1, b'_2, ..., b'_m\}$ of W then we can write the liner transform in the corresponding matrix representation of vectors as

$$[\mathsf{T}(\mathbf{x})]_{\beta'} = [\mathsf{T}]_{\beta}^{\beta'}[\mathbf{x}]_{\beta}$$

where $[T]_{\beta}^{\beta'}$ is a $m \times n$ matrix called Matrix of linear transform of T and is given by if $T(b_j) = t_{1j}b'_1 + t_{2j}b'_1 + ... + t_{mj}b'_m$ then $[t_{1j} t_{2j}..t_{mj}]^T$ forms the j^{th} column of $[T]_{\beta'}^{\beta}$.

Change of Basis

if $T : V \to V$ then $[T]^{\beta}_{\beta}$ is simply written as $[T]_{\beta}$ now if P is the change of basis matrix from basis β' to basis β of V i.e. $[x]_{\beta} = P[x]_{\beta'}$ then

$$[\mathsf{T}]_{\beta'} = \mathsf{P}^{-1}[\mathsf{T}]_{\beta}\mathsf{P}$$

(This can be treated as the origin of 'similar' equivalence matrix relationship $A \sim B \iff A = P^{-1}BP$.)

Isomorphism of Vector spaces

Two spaces V, W over same vector space \mathbb{F} are said to be isomorphic to each other

if there exist an invertible linear transform $T: V \rightarrow W$ (i.e. T is linear bijective map) and this is denoted by $V \cong W$. \blacksquare if **V**(**F**) is of dimension **n** then $V \cong \mathbb{F}^n = \{(\alpha_1, \alpha_2, \dots, \alpha_n) | \alpha_i \in \mathbb{F}\}$ i.e. set of n tuples of \mathbb{F} with component wise addition. ■ clearly $V(\mathbb{F}) \cong W(\mathbb{F})$ iff $\dim(W) =$ $\dim(\mathbf{V})$. Space of Linear Transform Set of linear transforms $L(V, W) = \{T | T : V \rightarrow W \text{ is linear transform}\}$ forms a commutative group under addition i.e. (T + U)(v) = T(v) + U(v) (as in W) so it also forms a Vector space over \mathbb{F} (same field as in **V** and **W**.) If $\dim(V) = n$ and $\dim(W) = m$ both finite then $\dim(L(V, W)) = nm$ Linear Functional Linear transformation $f : V(\mathbb{F}) \rightarrow \mathbb{F}$ is called a Linear Functional \blacksquare This is possible as $\mathbb{F}(\mathbb{F})$ is an one dimensional vector space. \blacksquare rank(f) = 1 or o so Nullity(f) = n -**1** or **n** if $dim(V) = n < \infty$. **Dual space** of V denoted by $V^* =$ $L(V, \mathbb{F})$ is the set of all linear functionals on ν \blacksquare clearly dim(V^{*}) = dim(V) if dim(V) is finite **Dual Basis :** for every basis β = $\{b_1, b_2, \dots, b_n\}$ of V there exist a corresponding basis $\beta^* = \{f_1, f_2, \dots, f_n\}$ of V^* such that $f_{i}(b_{j}) = \delta_{ij} = \begin{cases} \mathbf{1} & \text{if } i = j \\ \mathbf{0} & \text{if } i \neq j \end{cases} \text{ this } \beta^{*} \text{ is called}$ the dual basis of β \blacksquare if {..., f_{i} ,...} is the dual basis of {..., b_{i} ,...} and $x \in V$ is represented as $x = x_1b_1 + b_1$ $x_2b_2 + \ldots + x_nb_n$ then $x_i = f_i(x)$ i.e. the coordinate functions in representation is nothing but the dual functions, i.e. $x = \sum_{i=1}^{n} f_i(x) b_i.$

Functional representation Theorem

if **V** is finite dimensional vector space, $\beta = \{b_i\}$ is its basis and $[x]_\beta = [x_1 \ x_2 \dots x_n]$ then every functional **f** is of form

$$\mathbf{f}(\mathbf{x}) = \mathbf{a}_1 \mathbf{x}_1 + \mathbf{a}_2 \mathbf{x}_2 + \ldots + \mathbf{a}_n \mathbf{x}_n$$

in which $a_i = f(b_i)$. are fixed but x_i varies on input representation x.

Annihilator

if A ⊂ V(F) be any subset of V then annihilators of A is the set of linear functionals A^o = {f|f(A) = o, f ∈ V*} ⊆ V*
clearly A^o is a subspace of V* for any subset A of V
subspaces W₁ = W₁ iff W₁^o = W₂^o
(W₁ + W₂)^o = W₁^o ∩ W₂^o.
if W is subspace of V then dim(W) + dim(W^o) = dim(V).
if W is subspace of V then W ≃ W^{oo}.

Transpose of linear transform

if $T : V \to W$ is linear transform then its transpose $T^t : W^* \to V^*$ is a linear transform defined by the evaluation $T^t(g(.)) = g(T(.))$ i.e. for $g \in W^*$, $T^t(g)$ is the functional $f = g(T(.)) \in V^*$ $\blacksquare [T^t]_{\gamma^*}^{\beta^*} = ([T]_{\beta}^{\gamma})^t$ i.e. the corresponding matrix of T^t in dual basis of γ in W and β in V is just the Transpose of the matrix of Tin β and γ . \blacksquare if W is finite dimensional then for linear $T : V \to W$ we have $R(T^t) = (N(T))^o$ and $N(T^t) = (R(T))^o$ $\blacksquare T$ is 1 - 1 iff T^t is onto and T is onto iff T^t is 1 - 1. $\blacksquare Rank(T^t) = Rank(T)$. if linear transform $T \in L(V) = L(V, V)$ then it is called a linear operator.

4 Determinant

Motivation

for a finite dimensional space every linear transform in L(V) can be represented as a unique Matrix, but we need to 'uncover' this matrix to gain the properties of corresponding linear transform one such way is to create a Function from set of matrices to the underlying field with some properties which helps us with this 'gain'.

Some Properties needed for such a function are :

It must be a linear in terms of rows (or columns) of the matrix this is called n-linear.
It must be alternating i.e. if any 2 rows (or

columns) are equal then it is zero.

■ its vale on Identity should be **1**.

Say we obtain a function **D** with this property for $(n-1) \times (n-1)$ matrices then this can be extend to $n \times n$ by

$$\mathsf{E}_{j}(\mathsf{A}_{\mathfrak{n}}) = \sum_{i=1}^{\mathfrak{n}} (-\mathfrak{1})^{i+j} \mathfrak{a}_{ij} \mathsf{D}(\mathsf{A}_{ij})$$

for fixed $j \in \{1, 2, ..., n\}$, where $a_i j$ is the i^{th} row j^{th} column entry of A and $A_i j$ is the $n - 1 \times n - 1$ matrix obtained from A_n by removing i^{th} row and j^{th} column.

Definition

From above points we get determinant for a $n \times n$ matrix with entries from \mathbb{F} as $D : \mathbb{F}^{n \times n} \to \mathbb{F}$ that is n-linear, Alternating and D(I) = 1 is Defined by recursion from the above point or if $(i_1, i_2, ..., i_n)$ runs trough all the possible permutations of n i.e n- tuple with elements from $\{1, 2, ..., n\}$ with out repetition then $D(A = [a_{ij}]) =$

$$\sum_{(\mathfrak{i}_{\mathfrak{1}},\mathfrak{i}_{\mathfrak{2},\ldots},\mathfrak{i}_{\mathfrak{n}})} (-\mathfrak{1})^{\mathfrak{i}_{\mathfrak{1}}+\mathfrak{i}_{\mathfrak{2}}+\ldots+\mathfrak{i}_{\mathfrak{n}}} \mathfrak{a}_{\mathfrak{1}\mathfrak{i}_{\mathfrak{1}}} \mathfrak{a}_{\mathfrak{2}\mathfrak{i}_{\mathfrak{2}}}\ldots \mathfrak{a}_{\mathfrak{n}\mathfrak{i}_{\mathfrak{n}}}$$

Additional Properties

■ det(A) = det(B) if B is obtained by interchanging rows of A

 $\blacksquare \det \begin{bmatrix} A & B \\ o & C \end{bmatrix} = \det(A)\det(C).$

5 Diagonalizability

For linear operator $T \in L(V)$ a vector $\alpha \in V$ is called an eigenvector and λ called eigenvalue if $T(\alpha) = \lambda \alpha$. i.e. $\alpha \in N(T - \lambda I)$

■ if $A \in M_n(\mathbb{F})$ (all $n \times n$ matrices with entries from \mathbb{F}) then λ is an eigenvalue og A iff $det(A - \lambda I) = 0$.

From above point we get all eigenvalues of $A \in M_n(\mathbb{F})$ are the solutions of **Characteristic polynomial** f(t) = det(A - tI).

for a linear operator ${\sf T}$ on finite dimensional space ${\sf V}$

■ The polynomial p(T) such that $p(T) \equiv o$ i.e $p(T)x = o \forall x \in V$ then p(T) is called the **annihilating polynomial** of T

■ the set of all annihilating polynomials of **T** forms an ideal in $\mathbb{F}[x]$ now as \mathbb{F} is a field it is also an euclidean domain so this ideal is principle thus is generated by a monic polynomial of minimum degree in it called the **minimal polynomial** of **T**.

Algebraic Multiplicity of an eigenvalue λ for a linear operator T is multiplicity of λ in the characteristic polynomial of T. Geometric multiplicity of an eigenvalue λ for a linear operator T is the dimension of the nullspace of T – λ I.

A linear operator T on V is said to be Diagonalizable if there exist a basis of V containing only eigenvectors of T.

■ T is diagonalisable iff every eigenvalue of T belongs to the underlying field and Algebraic multiplicity = Geometric multiplicity for every eigenvalue of T.

Cayley-Hamilton Theorem

if **T** is a linear operator on finite dimensional space **V** then characteristic polynomial of **T** divides minimal polynomial of **T** i.e. if **f** is characteristic polynomial of **T** then $f(T) \equiv o$.

for a given eigenvalue λ of $T \in L(V)$ the set of all eigenvectors corresponding to λ form a subspace of V this is called eigenspace of λ .

Invariant subspace

W is an invariant subspace of T over *V* if $T(W) \subseteq W$.

Eigenspaces are invariant subspaces.

Diagonalizability test

T is diagonalizable iff minimal polynomial of T ($m_T(x)$) splits into distinct linear factors in the underlying field \mathbb{F} i.e.

T is diagonalizable \iff $\mathfrak{m}_{\mathsf{T}}(x) = (x - c_1)(x - c_2)..(x - c_n)$ for distinct $c_i \in \mathbb{F}$

matrix representation

T is diagonalizable iff their exist a representation of T in matrix form which is diagonal matrix i.e. if A is matrix of T in some basis then T is diagonalizable iff there exist an invertible matrix P such that $P^{-1}AP = D$ where D is diagonal i.e. iff

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

$$\sim \mathbf{D} = \begin{bmatrix} d_{11} & 0 & \dots & 0 \\ 0 & d_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_{nn} \end{bmatrix}$$

Projections or Idempotent Operators

Projections

6

E: V(𝔽) → V(𝔽)(is a projection if $E^2 = E$ ■ if E is a projection then $a \in R(T)$ iff E(a) = a.

if V is a finite dimensional vector space, say { $b_1, b_2, ... b_n$ } is a given ordered basis then we can define projection operators E_i (i = 1, 2, ... n - 1) as follows: for $x \in V$, $x = \sum_{j=1}^{n} a_j b_j$ we have $E_i(x) = \sum_{j=1}^{i} a_j b_j$ i.e. restriction of the element to a particular subspace. Here we get $R(E_i) = span(\{b_1, ... b_i\})$ and $N(E_i) = span(\{b_i, ... b_n\})$ (note : o and I are also projection operator so we can extend these definitions to include o-space and whole space.)

By intuition of above point we get if vector space $V = W_1 \oplus W_2 \oplus .. \oplus W_n$ then there exists linear operators $E_1, E_2..E_n$ such that

- **E** Range of $E_i = W_i$
- each E_i is a projection.
- $\blacksquare E_i E_j = \mathbf{0} \text{ for } i \neq j.$
- $\blacksquare I = E_1 + E_2 + \ldots + E_n$

Conversely if above 4 points are satisfied for some set of linear operators $\{E_i\}$ on finite dimensional vector space V then for $W_i = R(E_i)$ we have $V = W_1 \oplus W_2 \oplus ... \oplus W_n$. if a linear operator **T** on **V** (finite dimensional) and if **E** the projection operator of subspace $W \subseteq V$ (defining it can be done by using basis definition of the projections) then **T** commutes with **E** iff **W** is invariant on **T** i.e.

for $E^2 = E$ and R(E) = WTE = ET \iff T(W) \subseteq W

If vector space $V = U \oplus W$ for some non zero subspaces U, W and if P is the projection operator on V such that R(P) = U then I - P is also a projection operator on V such that R(I - P) = W.

Diagonalizability and Projections

if a linear operator **T** on **V** is diagonalizable on **V** then for distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ of **T** \exists projections $E_1, E_2, ..., E_n$ on **V** such that **I** range of E_i = eigenspace of λ_i in **V**.

$$\blacksquare T = \lambda_1 E_1 + \lambda_2 E_2 + \ldots + \lambda_n E_n.$$

 $\blacksquare E_i E_j = o \text{ for } i \neq j.$

 $\blacksquare I = E_1 + E_2 + \ldots + E_n$

Conversely if last 3 points are satisfied for any linear operator T and some set of projections $\{E_i\}$ on finite dimensional vector space V then T is Diagonalisable.

Primary Decomposition Theorem

for a Linear operator T on finite dimensional vector space V and if minimal polynomial of $T = m_T(x) = P_1^{r_1}(x)P_2^{r_2}(x)...P_n^{r_n}(x)$ where P_i are distinct **primes** $\mathbb{F}[x]$ then for $W_i =$ Nullspace of $P_i^{r_i}(T)$ we have $\blacksquare V = V = W_1 \oplus W_2 \oplus ... \oplus W_n$. $\blacksquare W_i$ is T invariant i.e. $T(W_i) \subseteq W_i$. \blacksquare for T_i restriction of T on subspace W_i has minimal polynomial $P_i^{r_i}$.

7 Jordan Form

Generalised eigenvectors

For a linear operator **T** on **V**, if λ is an eigenvalue of **T** then a vector **v** is such that $(\mathbf{T} - \lambda \mathbf{I})^k \mathbf{v} = \mathbf{o}$ for some positive integer **k** is generalised eigenvector.

The Subspace $K_{\lambda} = \{\nu | (T - \lambda I)^{k}\nu = o \text{ for some +ve integer } k\}$ is called generalised eigenspace.

properties of generalised eigenspaces

For a given linear operator let K_{λ} denote generalised eigenspace of T w.r.t (with respect to) eigenvalue λ of T then

\blacksquare K_{λ} is **T** invariant.

■ for eigenvalue $\mu \neq \lambda$ of T: T – μ I is oneone on K_{λ}.

■ $dim(K_{\lambda}) = m_{\lambda}$ where m_{λ} = Algebraic multiplicity of λ .

■ $K_{\lambda} = N((T - \lambda I)^{m_{\lambda}})$ where m_{λ} = Algebraic multiplicity of λ .

■ if all of the eigenvalues of **T** belong to the underlying field then

 $V = K_{\lambda_1} \oplus K_{\lambda_2} \oplus \ldots \oplus K_{\lambda_n}.$ where $\lambda_1, \lambda_2, \ldots \lambda_n$ are distinct eigenvalues of T.

Cycle of generalised eigenvector : if $v \in K_{\lambda}$ then the set $\gamma = \{(T - \lambda I)^{k-1}v, (T - \lambda I)^{k-2}v, \dots (T - \lambda I)v, v\},$ where $(T - \lambda I)^{k}v = o$ and $(T - \lambda I)^{k-1}v$ called as initial vector, forms a linearly independent set in K_{λ}

I if $\gamma_1, \gamma_2, ..., \gamma_l$ are cycle of generalised eigenvectors for a given eigenvalue λ such that for each γ_i initial vectors are distinct and linearly independent in K_{λ} then $\gamma = \cup \gamma_i$ is a linearly independent set in K_{λ} .

existence Jordan canonical form

for any linear operator $T \in L(V(\mathbb{F}))$

• every K_{λ} (generalised eigenspace) has a ordered basis constituting of cycle of generalised eigenvectors.

If characteristic polynomial of T completely splits into linear factors in \mathbb{F} then

there exist a basis of V containing only Cycle of generalised eigenvectors of T, this basis gives a unique characteristic to T which when viewed in matrix form of T gives raise to Jordan canonical form.

Consequences of Jordan Form

■ Two linear operators or square matrices (whose characteristics polynomial completely splits into linear factors in their under lying filed) are similar iff they have the same Jordan form representation.

 $\blacksquare T \sim T^t.$

■ if characteristic polynomial of **T** completely splits into linear factors in **F** then

 $\mathbf{T}\sim\mathbf{D}+\mathbf{N}.$

where **D** is diagonal and **N** is nilpotent such that TN = NT.

matrix representation

if if characteristic polynomial of T completely splits into linear factors in \mathbb{F} then matrix of T: **A** is similar to **J** where **J** is represented as blocks with diagonal entries as eigenvalues and super diagonal entries **1** and rest entries **0** i.e.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$\sim \mathbf{D} = \begin{bmatrix} [J_1] & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & [J_2] & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & [J_k] \end{bmatrix}$$

where
$$[J_i] = \begin{bmatrix} \lambda_i & \mathbf{1} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \lambda_i & \mathbf{1} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \mathbf{0} & \cdots & \cdots & \lambda_i & \mathbf{1} \\ \mathbf{0} & \cdots & \cdots & \ddots & \lambda_i \end{bmatrix}$$
, λ_i an

eigenvalue of T.

8 Rational Form

9 Inner Product Spaces

10 Forms

11 Bilinear Forms