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Every Amxn = PRmxn for Row reduced
Echelon form R and an invertible matrix P
let this relation be denoted by A rrec R

if m < n then the homogeneous system
AmxnX =0 has a non trivial solution

i.e. if the number of equations is less than
the number of variables then the Homoge-
neous System has a non trivial solution

Inverse Properties

B A, has inverse A™" iff AX = o has only
trivial solutions.

B A is invertible iff A rrec I (identity)

B if Elementary matrices are the corre-
sponding matrices of elementary transforms
(change of rows, addition of one row to another, mul-
tiplication of a row with an non zero constant) then
A is invertible iff A is product of elementary
matrices.

every Amxn = PmRQqn for P,Q invert-
ible and R is such that it has an identity in
upper corner and all other entries zero i.e.

R= [Ig g] for some identity Ix.
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0 Symbols and notations used
Amxn — M X n matrix.
A, — n X n matrix.
~ — the relation below
A~B = A=P'AP.
iff - <=
Basic Linear equations
1
theory

System of linear equations :

AmnxnXnx: = bixm for b = o is consis-
tent (has a solution) iff the row reduced Ech-
elon form of augmented matrix [A : b] has
same number of non zero rows as in row re-
duced echelon form of A.




2 | Vector Spaces

(V,F,+) denoted by V(FF) : V is vector
space over Field F if

B (V,+) is a commutative group,

for every o, € F and every a,b € V

B 1a = a where 1 € FF is multiplicative iden-
tity of IF.

B(x+pB)a=axa+Ba
Bx(a+b)=a0a+ ab

B (xp)a=a(Ba)

The elements of V are called vectors and el-
ements of IF are called scalars

Dependence

a set of vectors {v,,Vv..,vn} C V(F) are
called Linearly independent in V if o, v, +
&V, +.. +apvp = 0 = all afs are o
and no other choice is left. Other wise the
subset is called linearly dependent

Basis

a subset K of V is a spanning set of V if
span(K) =V.

A Linearly independent spanning set of
V(IF) is called a Basis of V.

if K={vy,v,..,vn} C V(F) then span of K
is the set {)_ aivilvi € K, € F}i.e. is all
the formal sums from set K with IF. This is
denoted by span(K).

A subset S of vector space V(F) is a sub-
space if S(IF) is a vector space by same op-
erations as in V

B given any K C V(F) span(K) is a sub-
space of V(FF).

B S is a subspace of V iff aa +b €
SVa,b € S and « € F the underlying field
of both spaces

B Intersection of subspaces (arbitrary) is
again a subspace i.e. if W;, W, are sub-
spaces of V then W; "W, is also a subspace
of V.

B Union of subspaces may not be a sub-
space

B Union of two subspaces is a subspace iff
one of them is contained in another i.e. for
W,, W, subspaces of V, W; UW, is a sub-
space iff W, C W, or W, C W,.

(note: this is not the same in case of 3 subspaces :
consider Z, X Z,(Z,) vector space here Z, X Z, =

span((0,1)) Uspan((1,0)) Uspan((1,1)).)

Dimension

In a given vector space V(IF).

B The number of elements in Basis is con-
stantn € Z™.

M if a set contains more vectors than the Ba-
sis set of a vector space then it is linearly
dependent.

B if a linearly independent set contains ex-
actly the same number of elements as a Basis
then it is also a Basis.

B These above points leads us to the Defini-
tion : Number of elements n in The Basis set
of V(FF) is unique and is called the Dimen-
sion of V(FF) denoted by dim(V) =n.

if W,W, C V are subspaces then
Hdim(W;) <V.
W let W, + W, = span(W,, W,) then

dim(W; +W,) = dim(W;) + dim(W,)
- dim(WI ﬂ Wz).
(note:  there cannot be a definite formula for

dim(Z?=1 W;) using dimensions of th s and their
counterparts (union, intersections) if n > 3. )

Direct sum

Now if for two subspaces W,,W, of V if
W, N'W, = 0 we write their sum W, + W,
as W, ® W,

BIfV=W,PdW, for some non zero sub-
spaces W,, W, then for each vector v € V




can be written uniquely as v = w; +w, for
unique w; € Wy and w, € W,.

Matrix Representation of vectors

Fix a basis B = {by,b,,.., by} for a vector
space V(FF) then as B spans V every vec-
tor x € V can be written as x = x,b; +
X,b, +..xnby for x; € F and b; € B and
this representation is unique so each vec-
tor can be associated with a column matrix
Xp = [Xg X5. . X0 T

Change of Basis Matrix

Given two basis B = {b,b,,..,bn}, B’ =
{b’,b,..,b]} for V Then one can change
the representation of x € V from [x]g to
[x]gs by

[X][sl = P[X]ﬁ

where P, is a invertible matrix given by
if bj = pljb{ + pzjbé qF 0o AP pnjbﬁ then
[P+j P2j--Pnjl’ forms the j'™™ column of P.

3 Linear Transform

Definition

amap T : V(F) — W(F) (between vector
spaces with same underlying field) is called
a linear transform if for every v,u € V and
acF

BTv+u)=T(v)+T(u)
BT(axv)=aT(V)

Range and Null space

For a linear transform T: V — W :

B Range Space of T denoted by R(T) C W
is {wlw =T (v) for some v € V}

B Null Space of T denoted by N(T) C Vis
V|T(v) =0 € W}

B Both of them are subspaces of the under-
lying space.

B T is one-one iff N(T) ={o}.

BTisontoif R(T) =W

B if dim(V) = dim(W) and N(T) = {o}

Lthen T is onto thus T is bijective. J

if T, U are both liner transforms from V —
W and if both agree on a basis of V (ie.
T(b;) = U(by) Vi for some basis B = {..,bi,..} of
V) then both of then are sameie. T = U.

Rank Nullity Theorem

for a linear transform T : V(IF) — W(TF)
if rank(T) = dim(R(T)) and nullity(T) =
dim(N(T)) then

rank(T) + nullity(T) = dim(V)

(this is just an analogue of 13t isomorphism theorems

of Groups)

Matrix of Linear Transform

Given a linear transform T : V — W, ba-
sis B = {by,b,..,bn} of V and basis B’/ =
{bl,bl,..,bl.} of W then we can write the
liner transform in the corresponding matrix
representation of vectors as

[T(x)lgr = [TI] [x]g

where [T]g/ is a m X n matrix called Ma-
trix of linear transform of T and is given by
if T(b)) = tijb{ + tzjb; oo T tmjb1,n then

[tsj tzj..tm;]" forms the j*™ column of [T]g,_

Change of Basis

if T :V — V then [T]E is simply writ-
ten as [T]g now if P is the change of ba-
sis matrix from basis 3’ to basis B of V i.e.
[X]ﬁ = P[X]B/ then

(This can be treated as the origin of ‘similar” equiva-
lence matrix relationship A ~B <= A =P~ 'BP.)

Isomorphism of Vector spaces

Two spaces V, W over same vector space
F are said to be isomorphic to each other




if there exist an invertible linear transform
T:V — W (ie T is linear bijective map)
and this is denoted by V = W.

Bl if V(IF) is of dimension n then

V = F" = {(ag, &s,.. 00 )|y € F}ie. set
of n tuples of F with component wise addi-
tion.

B clearly V(F) =
dim(V).

Space of Linear Transform

Set of linear transforms

L(V,W) ={T|T : V — W is linear transform}
forms a commutative group under addition
ie. (TH+U)(v) =T(v)+U(v) (asin W)
so it also forms a Vector space over [F (same
field as in V and W.)

B if dim(V) = n and dim(W) = m both
finite then dim(L(V,W)) =nm

Linear Functional

Linear transformation f : V(F) — F is
called a Linear Functional

B This is possible as [F(IF) is an one dimen-
sional vector space.

B rank(f) = 1 or o so Nullity(f) = n—
1ornif dim(V)=n«<oo.

B Dual space of V denoted by V* =
L(V,TF) is the set of all linear functionals on
Vv

B clearly dim(V*) = dim(V) if dim(V) is
finite

B Dual Basis : for every basis B =
{by, b,,..,bn}of V there exist a correspond-
ing basis B* = {f,,f,,..,fn} of V* such that
1 ifi=j
o ifi+j
the dual basis of 3

W(F) iff dim(W) =

fi(bj) = 8y = this B* is called

W if {..,f;,..}is the dual basis of {..,bj,..}
and x € V is represented as x = x,b, +
X,b, +.. +xnby then x; = fi(x) i.e. the co-
ordinate functions in representation is noth-
ing but the dual functions, i.e.

X = Z?:l fi (X)bi.

BV =V* = V"™ = L(V5F) (note: = in
V = V** is nothing but functional evaluation at a
point(vectors) only ie. every element of V** is of
form % for () =P (x) for somex € V)

Functional representation Theorem

if V is finite dimensional vector space, 3 =
{bji} is its basis and [x]g = [X; X,..xn] then
every functional f is of form

f(x) = aX; + WX, +.. + AnXn

in which a; = f(b;). are fixed but x; varies
on input representation x.

Annihilator

if A C V(FF) be any subset of V' then anni-
hilators of A is the set of linear functionals
A° ={f|f(A)=0o,f€ V*} C V*

B clearly A° is a subspace of V* for any
subset A of V

B subspaces W, = W, iff W? = W?

B (W, +W,)°=W?°nNnWwW2.

W if W is subspace of V then

dim(W) + dim(W?) = dim(V).
B if W is subspace of V then W = W°©°,

Transpose of linear transform

if T: V — W is linear transform then its
transpose T* : W* — V* is a linear trans-
form defined by the evaluation

T'(g(.)) = g(T(.) ie. for g € W*, Tt(g)
is the functional f=g(T(.)) € V*

[ | [Tt]ﬁf = ([TI§)* ie. the corresponding
matrix of Tt in dual basis of y in W and
in V is just the Transpose of the matrix of T
in 3 and vy.

B if W is finite dimensional then for linear
T:V — W we have

R(TY) = (N(T))° and N(T") = (R(T))®

B Tis 1—1iff Tt is onto and T is onto iff
Ttis1—1.

B Rank(Tt) = Rank(T).




if linear transform T € L(V)
it is called a linear operator.

=L(V,V) then

4 Determinant

for a finite dimensional space every linear
transform in L(V) can be represented as a
unique Matrix, but we need to “uncover’ this
matrix to gain the properties of correspond-
ing linear transform one such way is to cre-
ate a Function from set of matrices to the un-
derlying field with some properties which
helps us with this "gain’.

Some Properties needed for such a function
are :

B It must be a linear in terms of rows (or
columns) of the matrix this is called n-linear.
B [t must be alternating i.e. if any 2 rows (or
columns) are equal then it is zero.

M its vale on Identity should be 1.

Jhtiat. +in (i, Gai, . - Ani,

2 (=1

( iilizr- . rin )

Additional Properties
B det(A) = det(B) if B is obtained by in-
terchanging rows of A

M det [’2 ]é} =det(A)det(C).

5 | Diagonalizability

For linear operator T € L(V) a vector x € V
is called an eigenvector and A called eigen-
value if T(a) = Aa. i.e. &« € N(T — Al)

B if A €¢ M, (F) (all n X n matrices with
entries from IF) then A is an eigenvalue og A
iff det(A —AI) =

B From above point we get all eigenvalues
of A € My, (FF) are the solutions of Charac-
teristic polynomial f(t) = det(A —tI).

Say we obtain a function D with this prop-
erty for (n —1) X (n— 1) matrices then this
can be extend to n X n by

n
Z —1 1+]a1) (Aij)

i=1

for fixed j € {1,2,..,n}, where a;j is the it"
row jth column entry of A and A;j is the
N —1 X N — 1 matrix obtained from A, by
removing i*" row and j*" column.

From above points we get determinant for
a n X n matrix with entries from F as
D : F**" — T that is n-linear, Alternat-
ing and D(I) = 1 is Defined by recursion
from the above point or if (i, 1i,,..,in) runs
trough all the possible permutations of n
i.e n- tuple with elements from {1,2,..,n}
with out repetition then D(A = [ay]) =

for a linear operator T on finite dimensional
space V

B The polynomial p(T) such that p(T) = o
iep(T)x =0Vx € V then p(T) is called the
annihilating polynomial of T

B the set of all annihilating polynomials of
T forms an ideal in F[x] now as F is a field it
is also an euclidean domain so this ideal is
principle thus is generated by a monic poly-
nomial of minimum degree in it called the
minimal polynomial of T.

Algebraic Multiplicity of an eigenvalue A
for a linear operator T is multiplicity of A in
the characteristic polynomial of T.
Geometric multiplicity of an eigenvalue A
for a linear operator T is the dimension of
the nullspace of T — Al

A linear operator T on V is said to be Diag-
onalizable if there exist a basis of V contain-
ing only eigenvectors of T.




B T is diagonalisable iff every eigenvalue of
T belongs to the underlying field and Alge-
braic multiplicity = Geometric multiplicity
for every eigenvalue of T.

Cayley-Hamilton Theorem

if T is a linear operator on finite dimen-
sional space V' then characteristic polyno-
mial of T divides minimal polynomial of T
i.e. if f is characteristic polynomial of T then
f(T) =o.

for a given eigenvalue A of T € L(V) the set
of all eigenvectors corresponding to A form
a subspace of V this is called eigenspace of
A.

Invariant subspace

W is an invariant subspace of T over V if
T(W) Cw.

Ay Qg Ain
aZl aZZ aZTI
A= .

Qns QOn: ann
d, o 0
o d, 0

~D= ’

o 0 dnn

Projections or

6 Idempotent Operators

Projections

E: V(F) — V(F)(is a projection if E* = E
B if E is a projection then a € R(T) iff
E(a)=a.

(Eigenspaces are invariant subspaces.

Diagonalizability test

T is diagonalizable iff minimal polynomial
of T (mr(x)) splits into distinct linear factors
in the underlying field F i.e.

T is diagonalizable <— my(x) = (x —
c.)(x—c¢,)..(x — cq) for distinct ¢; € F

N

matrix representation

T is diagonalizable iff their exist a represen-
tation of T in matrix form which is diagonal
matrix i.e. if A is matrix of T in some ba-
sis then T is diagonalizable iff there exist an
invertible matrix P such that P"*AP = D
where D is diagonal i.e. iff

if V is a finite dimensional vector space,
say {by,b,,..bn} is a given ordered basis
then we can define projection operators E;
(i=12.n—1) as follows: forx € V, x =
n i

> ajbj wehave Ei(x) = }_ a;jbj i.e. restric-
=1 =1

3cion of the element to a pjarticular subspace.
Here we get R(E;) = span({b,,..b;}) and
N(Ey) = span({bi,..bn}) (note : o and I are
also projection operator so we can extend these defi-
nitions to include o-space and whole space.)

By intuition of above point we get

if vector space V. = W, W, B.. § W,
then there exists linear operators E,, E,..E,y
such that

M Range of E; = W;

M each E; is a projection.

B EE; =oforiFj.

BI=E,+E, +..+E,

Conversely if above 4 points are satisfied for
some set of linear operators {E;} on finite
dimensional vector space V then for Wj =
R(E{) wehave V=W, DOW, H.. S W,.

/




if a linear operator T on V (finite dimensional)
and if E the projection operator of subspace
W C V (defining it can be done by using basis def-
inition of the projections) then T commutes with
E iff W is invariant on T i.e.

for E? =E and R(E) =W
TE=ET «<—= T(W)C W

If vector space V = U@ W for some non
zero subspaces U, W and if P is the projec-
tion operator on V such that R(P) = U then
I — P is also a projection operator on V such
that R(I — P) = W.

Diagonalizability and Projections

if a linear operator T on V is diagonal-
izable on V then for distinct eigenvalues
A1, Az, .., An of T 3 projections E, E,,..En
on V such that

M range of E; = eigenspace of A; in V.
BT=M\NE +AE +.. +AEn.

B EE; =oforiFj.
BI=E,+E,+..+E,

Conversely if last 3 points are satisfied for
any linear operator T and some set of projec-
tions {E;} on finite dimensional vector space
V then T is Diagonalisable.

for a Linear operator T on finite dimensional
vector space V and if minimal polynomial of
T = my(x) = PI*(x)P22(x)..Py* (x) where
P; are distinct primes F[x] then for W; =
Nullspace of P{*(T) we have
BV=V=W,eW,SD.. HW,.

B Wi, is T invariant i.e. T(W;) C W;.

B for T; restriction of T on subspace W; has
minimal polynomial P:.:i.

Primary Decomposition Theorem

7 | Jordan Form

Generalised eigenvectors

For a linear operator T on V, if A is an
eigenvalue of T then a vector v is such that
(T —AI)*v = o for some positive integer k
is generalised eigenvector.

B The Subspace Ky = {V|(T — AD kv =
o for some +ve integer k} is called gener-
alised eigenspace.

properties of generalised eigenspaces

For a given linear operator let K, denote
generalised eigenspace of T w.r.t (with re-
spect to) eigenvalue A of T then

M K, is T invariant.

B for eigenvalue u # A of T: T — ul is one-
one on K,.

B dim(K,) = m, where m, = Algebraic
multiplicity of A.

B K\ = N((T —AI)™)where m, = Alge-
braic multiplicity of A.

M if all of the eigenvalues of T belong to the
underlying field then

V. = Ky &Ky, &.. & Ky,. where
A1, Az, .. A are distinct eigenvalues of T.

Cycle of generalised eigenvector : if
v € K, then the set vy = {(T —
AD* %y (T — ADK2y,..(T — Al)v,v)},
where (T —A¥v = o0 and (T — AI)* v
called as initial vector, forms a linearly
independent set in K

B if v, V.., 1 are cycle of generalised
eigenvectors for a given eigenvalue A such
that for each <y; initial vectors are dis-
tinct and linearly independent in K, then
Y = Uy; is a linearly independent set in Kj.

existence Jordan canonical form

for any linear operator T € L(V/(IF))

B every K, (generalised eigenspace) has a or-
dered basis constituting of cycle of gener-
alised eigenvectors.

B if characteristic polynomial of T com-
pletely splits into linear factors in F then




there exist a basis of V containing only Cy-
cle of generalised eigenvectors of T, this ba-
sis gives a unique characteristic to T which
when viewed in matrix form of T gives raise
to Jordan canonical form.

Consequences of Jordan Form

B Two linear operators or square matrices
(whose characteristics polynomial completely splits
into linear factors in their under lying filed) are sim-
ilar iff they have the same Jordan form rep-
resentation.

BT ~T.

B if characteristic polynomial of T com-
pletely splits into linear factors in F then

T~D-+N.

where D is diagonal and N is nilpotent such
that TN = NT.

Qyq (¢ 7 e Ain
Az A, --- Qzn
A= .
Qns QOn: ann
[Il] o o
o [J.] o
~D= ) )
o o [Jx]
Ay 1 o 0|
0 Aj 1 0
where [Ji] = | .. .. i, Ajan
0 cee e A‘i 1
0 }\i_

eigenvalue of T.

8

Rational Form

matrix representation

if if characteristic polynomial of T com-
pletely splits into linear factors in IF then
matrix of T : A is similar to J where J is
represented as blocks with diagonal entries
as eigenvalues and super diagonal entries 1
and rest entries o i.e.

Inner Product Spaces

Forms

Bilinear Forms
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