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0 Symbols and notations used

Am×n →m×n matrix.
An → n×n matrix.

∼ → the relation below
A ∼ B =⇒ A = P−1AP.

iff → ⇐⇒

1
Basic Linear equations
theory

Every Am×n = PRm×n for Row reduced
Echelon form R and an invertible matrix P
let this relation be denoted by A rrec R

if m < n then the homogeneous system
Am×nX = 0 has a non trivial solution
i.e. if the number of equations is less than
the number of variables then the Homoge-
neous System has a non trivial solution

Inverse Properties

■ An has inverse A−1 iff AX = 0 has only
trivial solutions.
■ A is invertible iff A rrec I (identity)
■ if Elementary matrices are the corre-
sponding matrices of elementary transforms
(change of rows, addition of one row to another, mul-
tiplication of a row with an non zero constant) then
A is invertible iffA is product of elementary
matrices.

Echelon Form
every Am×n = PmRQn for P,Q invert-
ible and R is such that it has an identity in
upper corner and all other entries zero i.e.

R =

[
Ik 0
0 0

]
for some identity Ik.

Consistency

System of linear equations :
Am×nXn×1 = b1×m for b ̸= 0 is consis-
tent (has a solution) iff the row reduced Ech-
elon form of augmented matrix [A : b] has
same number of non zero rows as in row re-
duced echelon form of A.
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2 Vector Spaces
Definition
(V, F,+) denoted by V(F) : V is vector
space over Field F if
■ (V,+) is a commutative group,
for every α,β ∈ F and every a,b ∈ V
■ 1a = awhere 1 ∈ F is multiplicative iden-
tity of F.
■ (α+β)a = αa+βa

■ α(a+b) = αa+αb

■ (αβ)a = α(βa)

The elements of V are called vectors and el-
ements of F are called scalars

Span

if K = {v1, v,. . , vn} ⊆ V(F) then span of K
is the set {

∑
αivi|vi ∈ K,αi ∈ F} i.e. is all

the formal sums from set K with F. This is
denoted by span(K).

Subspace

A subset S of vector space V(F) is a sub-
space if S(F) is a vector space by same op-
erations as in V
■ given any K ⊆ V(F) span(K) is a sub-
space of V(F).
■ S is a subspace of V iff αa + b ∈
S ∀a,b ∈ S and α ∈ F the underlying field
of both spaces
■ Intersection of subspaces (arbitrary) is
again a subspace i.e. if W1,W2 are sub-
spaces of V thenW1∩W2 is also a subspace
of V.
■ Union of subspaces may not be a sub-
space
■ Union of two subspaces is a subspace iff
one of them is contained in another i.e. for
W1,W2 subspaces of V, W1 ∪W2 is a sub-
space iff W1 ⊆W2 or W2 ⊆W1.
(note: this is not the same in case of 3 subspaces :
consider Z2 × Z2(Z2) vector space here Z2 × Z2 =

span((0, 1))∪ span((1, 0))∪ span((1, 1)).)

Dependence

a set of vectors {v1, v,. . , vn} ⊆ V(F) are
called Linearly independent in V if α1v1 +

α2v2 + . . + αnvn = 0 =⇒ all α′
is are 0

and no other choice is left. Other wise the
subset is called linearly dependent

Basis
a subset K of V is a spanning set of V if
span(K) = V.
A Linearly independent spanning set of
V(F) is called a Basis of V.

Dimension
In a given vector space V(F).
■ The number of elements in Basis is con-
stant n ∈ Z+.
■ if a set contains more vectors than the Ba-
sis set of a vector space then it is linearly
dependent.
■ if a linearly independent set contains ex-
actly the same number of elements as a Basis
then it is also a Basis.
■ These above points leads us to the Defini-
tion : Number of elements n in The Basis set
of V(F) is unique and is called the Dimen-
sion of V(F) denoted by dim(V) = n.

if W1,W2 ⊆ V are subspaces then
■ dim(Wi) ≤ V.
■ let W1 +W2 = span(W1,W2) then

dim(W1 +W2) = dim(W1)+dim(W2)

−dim(W1 ∩W2).

(note: there cannot be a definite formula for
dim(

∑n
i=1Wi) using dimensions of W ′

is and their
counterparts (union, intersections) if n ≥ 3. )

Direct sum
Now if for two subspaces W1,W2 of V if
W1 ∩W2 = ∅ we write their sum W1 +W2
as W1 ⊕W2
■ If V = W1 ⊕W2 for some non zero sub-
spaces W1,W2 then for each vector v ∈ V
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can be written uniquely as v = w1 +w2 for
unique w1 ∈W1 and w2 ∈W2.

Matrix Representation of vectors

Fix a basis β = {b1,b2, . . ,bn} for a vector
space V(F) then as B spans V every vec-
tor x ∈ V can be written as x = x1b1 +

x2b2 + . . xnbn for xi ∈ F and bi ∈ B and
this representation is unique so each vec-
tor can be associated with a column matrix
xβ = [x1 x2. . xn]T

Change of Basis Matrix

Given two basis β = {b1,b2, . . ,bn}, β′ =

{b′
1,b′

2, . . ,b′
n} for V Then one can change

the representation of x ∈ V from [x]β to
[x]β′ by

[x]β′ = P[x]β

where Pn is a invertible matrix given by
if bj = p1jb

′
1 + p2jb

′
2 + . . + pnjb

′
n then

[p1j p2j. .pnj]
T forms the jth column of P.

3 Linear Transform
Definition
a map T : V(F) → W(F) (between vector
spaces with same underlying field) is called
a linear transform if for every v,u ∈ V and
α ∈ F
■ T(v+u) = T(v)+ T(u)
■ T(αv) = αT(V)

Range and Null space

For a linear transform T : V →W :
■ Range Space of T denoted by R(T) ⊆W

is {w|w = T(v) for some v ∈ V}
■ Null Space of T denoted by N(T) ⊆ V is
{v|T(v) = 0 ∈W}

■ Both of them are subspaces of the under-
lying space.
■ T is one-one iff N(T) = {0}.
■ T is onto if R(T) =W
■ if dim(V) = dim(W) and N(T) = {0}

then T is onto thus T is bijective.

if T ,U are both liner transforms from V →
W and if both agree on a basis of V (i.e.
T(bi) = U(bi) ∀i for some basis β = {. . ,bi, . . } of
V) then both of then are same i.e. T ≡ U.

Rank Nullity Theorem

for a linear transform T : V(F) → W(F)

if rank(T) = dim(R(T)) and nullity(T) =
dim(N(T)) then

rank(T)+nullity(T) = dim(V)

(this is just an analogue of 1st isomorphism theorems
of Groups)

Matrix of Linear Transform
Given a linear transform T : V → W, ba-
sis β = {b1,b2. . ,bn} of V and basis β′ =

{b′
1,b′

2, . . ,b′
m} of W then we can write the

liner transform in the corresponding matrix
representation of vectors as

[T(x)]β′ = [T ]
β′

β [x]β

where [T ]
β′

β is a m× n matrix called Ma-
trix of linear transform of T and is given by
if T(bj) = t1jb

′
1 + t2jb

′
1 + . . + tmjb

′
m then

[t1j t2j. . tmj]
T forms the jth column of [T ]ββ′ .

Change of Basis

if T : V → V then [T ]
β
β is simply writ-

ten as [T ]β now if P is the change of ba-
sis matrix from basis β′ to basis β of V i.e.
[x]β = P[x]β′ then

[T ]β′ = P−1[T ]βP

(This can be treated as the origin of ’similar’ equiva-
lence matrix relationship A ∼ B ⇐⇒ A = P−1BP.)

Isomorphism of Vector spaces

Two spaces V,W over same vector space
F are said to be isomorphic to each other
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if there exist an invertible linear transform
T : V → W (i.e. T is linear bijective map)
and this is denoted by V ∼=W.
■ if V(F) is of dimension n then
V ∼= Fn = {(α1,α2, . .αn)|αi ∈ F} i.e. set
of n tuples of F with component wise addi-
tion.
■ clearly V(F) ∼= W(F) iff dim(W) =

dim(V).

Space of Linear Transform

Set of linear transforms
L(V,W) = {T |T : V → W is linear transform}

forms a commutative group under addition
i.e. (T +U)(v) = T(v) +U(v) (as in W )
so it also forms a Vector space over F (same
field as in V and W. )
■ if dim(V) = n and dim(W) = m both
finite then dim(L(V,W)) = nm

Linear Functional
Linear transformation f : V(F) → F is
called a Linear Functional
■ This is possible as F(F) is an one dimen-
sional vector space.
■ rank(f) = 1 or 0 so Nullity(f) = n−

1 or n if dim(V) = n <∞.
■ Dual space of V denoted by V∗ =

L(V, F) is the set of all linear functionals on
V

■ clearly dim(V∗) = dim(V) if dim(V) is
finite
■ Dual Basis : for every basis β =

{b1,b2, . . ,bn} of V there exist a correspond-
ing basis β∗ = {f1, f2, . . , fn} of V∗ such that

fi(bj) = δij =

{
1 if i = j
0 if i ̸= j

this β∗ is called

the dual basis of β

■ if {. . , fi, . . } is the dual basis of {. . ,bi, . . }
and x ∈ V is represented as x = x1b1 +

x2b2 + . . + xnbn then xi = fi(x) i.e. the co-
ordinate functions in representation is noth-
ing but the dual functions, i.e.
x =

∑n
i=1 fi(x)bi.

■ V ∼= V∗ ∼= V∗∗ = L(V∗, F) (note: ∼= in
V ∼= V∗∗ is nothing but functional evaluation at a
point(vectors) only i.e. every element of V∗∗ is of
form x̂ for x̂(ψ) = ψ(x) for some x ∈ V .)

Functional representation Theorem

if V is finite dimensional vector space, β =

{bi} is its basis and [x]β = [x1 x2. . xn] then
every functional f is of form

f(x) = a1x1 +a2x2 + . . +anxn

in which ai = f(bi). are fixed but xi varies
on input representation x.

Annihilator
if A ⊂ V(F) be any subset of V then anni-
hilators of A is the set of linear functionals
Ao = {f|f(A) = 0, f ∈ V∗} ⊆ V∗

■ clearly Ao is a subspace of V∗ for any
subset A of V
■ subspaces W1 =W1 iff Wo

1 =Wo
2

■ (W1 +W2)
o =Wo

1 ∩Wo
2 .

■ if W is subspace of V then

dim(W)+dim(Wo) = dim(V).

■ if W is subspace of V then W ∼=Woo.

Transpose of linear transform

if T : V → W is linear transform then its
transpose T t : W∗ → V∗ is a linear trans-
form defined by the evaluation
T t(g(.)) = g(T(.)) i.e. for g ∈ W∗, T t(g)

is the functional f = g(T(.)) ∈ V∗

■ [T t]
β∗
γ∗ = ([T ]

γ
β)

t i.e. the corresponding
matrix of T t in dual basis of γ in W and β
in V is just the Transpose of the matrix of T
in β and γ.
■ if W is finite dimensional then for linear
T : V →W we have
R(T t) = (N(T))o and N(T t) = (R(T))o

■ T is 1− 1 iff T t is onto and T is onto iff
T t is 1− 1.
■ Rank(T t) = Rank(T).
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if linear transform T ∈ L(V) = L(V,V) then
it is called a linear operator.

4 Determinant
Motivation
for a finite dimensional space every linear
transform in L(V) can be represented as a
unique Matrix, but we need to ’uncover’ this
matrix to gain the properties of correspond-
ing linear transform one such way is to cre-
ate a Function from set of matrices to the un-
derlying field with some properties which
helps us with this ’gain’.

Some Properties needed for such a function
are :
■ It must be a linear in terms of rows (or
columns) of the matrix this is called n-linear.
■ It must be alternating i.e. if any 2 rows (or
columns) are equal then it is zero.
■ its vale on Identity should be 1.

Say we obtain a function D with this prop-
erty for (n− 1)× (n− 1) matrices then this
can be extend to n×n by

Ej(An) =

n∑
i=1

(−1)i+jaijD(Aij)

for fixed j ∈ {1, 2, . . ,n}, where aij is the ith

row jth column entry of A and Aij is the
n− 1× n− 1 matrix obtained from An by
removing ith row and jth column.

Definition
From above points we get determinant for
a n × n matrix with entries from F as
D : Fn×n → F that is n-linear, Alternat-
ing and D(I) = 1 is Defined by recursion
from the above point or if (i1, i2, . . , in) runs
trough all the possible permutations of n
i.e n- tuple with elements from {1, 2, . . ,n}
with out repetition then D(A = [aij]) =

∑
(i1,i2,. . ,in)

(−1)i1+i2+. .+ina1i1a2i2 . .anin

Additional Properties

■ det(A) = det(B) if B is obtained by in-
terchanging rows of A

■ det

[
A B

0 C

]
= det(A)det(C).

5 Diagonalizability

For linear operator T ∈ L(V) a vector α ∈ V
is called an eigenvector and λ called eigen-
value if T(α) = λα. i.e. α ∈ N(T − λI)

■ if A ∈ Mn(F) (all n× n matrices with
entries from F) then λ is an eigenvalue og A
iff det(A− λI) = 0.
■ From above point we get all eigenvalues
of A ∈Mn(F) are the solutions of Charac-
teristic polynomial f(t) = det(A− tI).

for a linear operator T on finite dimensional
space V
■ The polynomial p(T) such that p(T) ≡ 0
i.e p(T)x = 0 ∀x ∈ V then p(T) is called the
annihilating polynomial of T
■ the set of all annihilating polynomials of
T forms an ideal in F[x] now as F is a field it
is also an euclidean domain so this ideal is
principle thus is generated by a monic poly-
nomial of minimum degree in it called the
minimal polynomial of T .

Algebraic Multiplicity of an eigenvalue λ
for a linear operator T is multiplicity of λ in
the characteristic polynomial of T .
Geometric multiplicity of an eigenvalue λ
for a linear operator T is the dimension of
the nullspace of T − λI.

A linear operator T on V is said to be Diag-
onalizable if there exist a basis of V contain-
ing only eigenvectors of T .
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■ T is diagonalisable iff every eigenvalue of
T belongs to the underlying field and Alge-
braic multiplicity = Geometric multiplicity
for every eigenvalue of T .

Cayley-Hamilton Theorem

if T is a linear operator on finite dimen-
sional space V then characteristic polyno-
mial of T divides minimal polynomial of T
i.e. if f is characteristic polynomial of T then
f(T) ≡ 0.

for a given eigenvalue λ of T ∈ L(V) the set
of all eigenvectors corresponding to λ form
a subspace of V this is called eigenspace of
λ.

Invariant subspace

W is an invariant subspace of T over V if
T(W) ⊆W.

Eigenspaces are invariant subspaces.

Diagonalizability test

T is diagonalizable iff minimal polynomial
of T (mT (x)) splits into distinct linear factors
in the underlying field F i.e.
T is diagonalizable ⇐⇒ mT (x) = (x−

c1)(x− c2). . (x− cn) for distinct ci ∈ F

matrix representation

T is diagonalizable iff their exist a represen-
tation of T in matrix form which is diagonal
matrix i.e. if A is matrix of T in some ba-
sis then T is diagonalizable iff there exist an
invertible matrix P such that P−1AP = D

where D is diagonal i.e. iff

A =


a11 a12 . . a1n
a21 a22 . . a2n

...
...

. . .
...

an1 an2 . . ann



∼ D =


d11 0 . . 0
0 d22 . . 0
...

...
. . .

...
0 0 . . dnn



6
Projections or
Idempotent Operators

Projections

E : V(F) → V(F)( is a projection if E2 = E
■ if E is a projection then a ∈ R(T) iff
E(a) = a.

if V is a finite dimensional vector space,
say {b1,b2, . .bn} is a given ordered basis
then we can define projection operators Ei
(i = 1, 2, . .n− 1 ) as follows: for x ∈ V, x =
n∑
j=1
ajbj we have Ei(x) =

i∑
j=1
ajbj i.e. restric-

tion of the element to a particular subspace.
Here we get R(Ei) = span({b1, . .bi}) and
N(Ei) = span({bi, . .bn}) (note : 0 and I are
also projection operator so we can extend these defi-
nitions to include 0-space and whole space.)

By intuition of above point we get
if vector space V = W1 ⊕W2 ⊕ . . ⊕Wn

then there exists linear operators E1,E2. .En
such that
■ Range of Ei =Wi

■ each Ei is a projection.
■ EiEj = 0 for i ̸= j.
■ I = E1 + E2 + . . + En
Conversely if above 4 points are satisfied for
some set of linear operators {Ei} on finite
dimensional vector space V then for Wi =

R(Ei) we have V =W1 ⊕W2 ⊕ . . ⊕Wn.
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if a linear operator T on V (finite dimensional)
and if E the projection operator of subspace
W ⊆ V (defining it can be done by using basis def-
inition of the projections) then T commutes with
E iff W is invariant on T i.e.

for E2 = E and R(E) =W
TE = ET ⇐⇒ T(W) ⊆W

If vector space V = U⊕W for some non
zero subspaces U,W and if P is the projec-
tion operator on V such that R(P) = U then
I−P is also a projection operator on V such
that R(I−P) =W.

Diagonalizability and Projections

if a linear operator T on V is diagonal-
izable on V then for distinct eigenvalues
λ1,λ2, . . ,λn of T ∃ projections E1,E2, . .En
on V such that
■ range of Ei = eigenspace of λi in V.
■ T = λ1E1 + λ2E2 + . . + λnEn.
■ EiEj = 0 for i ̸= j.
■ I = E1 + E2 + . . + En
Conversely if last 3 points are satisfied for
any linear operator T and some set of projec-
tions {Ei} on finite dimensional vector space
V then T is Diagonalisable.

Primary Decomposition Theorem

for a Linear operator T on finite dimensional
vector space V and if minimal polynomial of
T = mT (x) = Pr1

1 (x)Pr2
2 (x). .Prn

n (x) where
Pi are distinct primes F[x] then for Wi =

Nullspace of Pri

i (T) we have
■ V = V =W1 ⊕W2 ⊕ . . ⊕Wn.
■Wi is T invariant i.e. T(Wi) ⊆Wi.
■ for Ti restriction of T on subspaceWi has
minimal polynomial Pri

i .

7 Jordan Form

Generalised eigenvectors

For a linear operator T on V, if λ is an
eigenvalue of T then a vector v is such that
(T − λI)kv = 0 for some positive integer k
is generalised eigenvector.
■ The Subspace Kλ = {v|(T − λI)kv =

0 for some +ve integer k} is called gener-
alised eigenspace.

properties of generalised eigenspaces

For a given linear operator let Kλ denote
generalised eigenspace of T w.r.t (with re-
spect to) eigenvalue λ of T then
■ Kλ is T invariant.
■ for eigenvalue µ ̸= λ of T : T − µI is one-
one on Kλ.
■ dim(Kλ) = mλ where mλ = Algebraic
multiplicity of λ.
■ Kλ = N((T − λI)mλ)where mλ = Alge-
braic multiplicity of λ.
■ if all of the eigenvalues of T belong to the
underlying field then
V = Kλ1 ⊕ Kλ2 ⊕ . . ⊕ Kλn

. where
λ1,λ2, . .λn are distinct eigenvalues of T .

Cycle of generalised eigenvector : if
v ∈ Kλ then the set γ = {(T −

λI)k−1v, (T − λI)k−2v, . . (T − λI)v, v},
where (T − λI)kv = 0 and (T − λI)k−1v

called as initial vector, forms a linearly
independent set in Kλ

■ if γ1,γ2, . . ,γl are cycle of generalised
eigenvectors for a given eigenvalue λ such
that for each γi initial vectors are dis-
tinct and linearly independent in Kλ then
γ = ∪γi is a linearly independent set in Kλ.

existence Jordan canonical form

for any linear operator T ∈ L(V(F))

■ every Kλ (generalised eigenspace) has a or-
dered basis constituting of cycle of gener-
alised eigenvectors.
■ if characteristic polynomial of T com-
pletely splits into linear factors in F then
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there exist a basis of V containing only Cy-
cle of generalised eigenvectors of T , this ba-
sis gives a unique characteristic to T which
when viewed in matrix form of T gives raise
to Jordan canonical form.

Consequences of Jordan Form

■ Two linear operators or square matrices
(whose characteristics polynomial completely splits
into linear factors in their under lying filed) are sim-
ilar iff they have the same Jordan form rep-
resentation.
■ T ∼ T t.
■ if characteristic polynomial of T com-
pletely splits into linear factors in F then

T ∼ D+N.

whereD is diagonal andN is nilpotent such
that TN = NT .

matrix representation

if if characteristic polynomial of T com-
pletely splits into linear factors in F then
matrix of T : A is similar to J where J is
represented as blocks with diagonal entries
as eigenvalues and super diagonal entries 1
and rest entries 0 i.e.

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann



∼ D =


[J1] 0 · · · 0
0 [J2] · · · 0
...

...
. . .

...
0 0 · · · [Jk]



where [Ji] =


λi 1 0 · · · 0
0 λi 1 · · · 0
...

...
. . . . . .

...
0 · · · · · · λi 1
0 · · · · · · . . λi

, λi an

eigenvalue of T .

8 Rational Form

9 Inner Product Spaces

10 Forms

11 Bilinear Forms
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