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1 Introduction

1.1 Definitions

e Euclidean space:

norm: ||x|| = \/ (5 + B + -+ +22)

R" metric space with

now for R3 Euclidean space:

e Scalar field V assigns each point in R® to a
corresponding scalar

e Vector field V : R® — R3 assigns each
point in R3 to a corresponding vector eg:
natural frame fields: Uy = (1,0,0),,U; =
(0,1,0),,Us = (0,0,1), Then every vector
field v(p) = Y3_,vi(p)U; where v; is scalar
field

e Tangent vector V) is a vector in V direction
at point p i.e. (01,02,3) (py,ps,p3)

1.2 Basics

e Directional derivative v,[f]: for scalar field
f directional derivative is the rate of its change
at p in v direction so:

op[f] = £ (f(p+ tv))]i=0

here p 4 tv is the line at p in v direction so at
t = 0 line is at p hence the definition makes
sense

e now if v, is chosen as the vector from vector
field V ie. V(p), then direction derivative in
a way give change of scalar field with respect
to (w.r.t) vector field at p in a sense it is like
operating vector field on scalar field

[ ] if vp = (121, 02, v3)(p1,pz,p3) Then

o111 = 1 vige ()

e clearly directional derivative is linear and
v,y[fg] = vp[f1g + fuplg] (Libnizian rule)

e Curve a : open interval of R — R?
and a is differentiable ie. if a(t) =
(a1(t), a2(t), a3(t)) then each a;(t) is differ-
entiable real function

e.g.. straight line a(t) = p +tV



® a'(t) = a’(t),(y ie a’is a tangent vector at
a point in direction of rate change of a

® Re-parametrisation if I, | are open intervals
inR,a:I —-R¥iscurveand h: ] — Iisa
differentiable function then b(s) = a(h(s)) is
a curve same as a but different velocity i.e.

b'(s) = 2a’(h)

o Lemma a'(t)[f] = £ (f(a))(t)

® a curve a is regularif a’ # 0

2 Forms

2.1 1-forms

e 1-form ¢: function from set of all tangent
vector to R that is linear at each point i.e at
p ¢ = ¢p then ¢p(aV +bW) = ag,(V) +
b, (W)

e s0if v, = V(p), then 1-form acts on an vec-
tor field also converting it to a scalar in a way
vector field to scalar field

e df : for a differentiable function define 1-
form df (v,) = v,[f]

e now dx;(v,) = v; fori =1,2,3

e as 1-forms are linear at a point =—
if lIJ(ZJp) = fldxl -|- fzdxz —|— fgdxg,(v,,) =
fi(p)dxi(v) + fa(p)dx:(v) + fs(p)dxs(v)

then ¢ is a 1-form

e every 1-form ¢ = ) fidx; where f; = ¢ (U;)
® so df(v,) = Z%(p)dxi(v)d Thus df =
Y. 3L dx;

2.2 Differential forms

e if T, is the vector space containing all tan-
gent vectors at point p then 1-forms is a linear
functional on this space

e going with the flow of 1-form we define
other forms as linear in T, X T, ,T, X T, X T
etc.

e Wedge product : it is a operation on two 1-
forms defined by dx; A dx;j(v) = dx;(v)dx;(v)
and dx; A dx; = —dx;j N\ dx;

e now other forms can be obtained by this
wedge product i.e. 1-form A 1-form gives 2-
form,

1-form A 2-form gives 3-form, etc

e so 1-form = fdx + gdy + hdz

2-form = fdxdy + gdydz + hdxdz

3-form = fdxdydz

e Exterior derivative : of 1-form (¢ = ) fidx;)
=2-form d¢p = Y df; N\ dx; so exterior deriva-
tive can be used to convert 1-form to a 2-form,
2-form to 3-form ...etc

® Theorem: for function f 1-forms ¢ and ¢
then

1 d(f¢) = df A+ fdg
2 d(pAY) =dpAp— P Ady

1. df <> grad(f)

2. if ¢(1 — form) <« V then d¢p <+
curl(V)

3. if #(2 — form) <> V then dy <+
div(V)dxdydz

3 Mapping

e Mapping F : R” — R™ such that F(p) =
(fi(p), f2(p), ..., fu(p)) then each f; is differ-

entiable real function

e Tangent map of F : F * (v,) is the initial ve-
locity of curve t — F(p + tv) this sends tan-
gent vectors in IR” to tangent vectors in R™

o Fx(v) = (v[fil,o[fo],-- -, olfulJE(p)

e clearly tangent map is linear thus it is a lin-
ear transformation from from and to Tangent
vector spaces

e F is regular iff F* is one-one i.e. Jacobian
matrix of has rank equal to domain space



4 Frame fields

e frame: a set of 3 unit vectors that are mutu-
ally perpendicular to each other in R?

e attitude matrix of a frame A: coordinate
matrix of a frame (clearly it is orthogonal i.e
AAT =1

4.1 Curves and Frame fields

® a curve a is said to have unit speed if
||’ (t)]| =1Vt in domain

e *Theorem: if a is a regular curve in R® then
there exist as reparametrisation b of a such that
b is a unit speed curve (proof by inverse func-
tion theorem) now b = a(s(t)) which has unit
length then s(t) is the called arclength function
of a as it converts ||a’|| to one

e Vector field on a curve Y: (for a curve a) as-
signs a Tangent vector Y (t),(;) for every point
a(t)
® Y is parallel vector field to a id ||Y(#)| =
1Vt

4.1.1 Franet fields

e if b is a unit speed curve then for b:

e T =1V’ is called Tangent vector field, clearly
||T|| = 1so T tells us the direction of change
of b

e T’ = b” is called Curvature vector field, it
measures how the curve is changing

o N =
clearly ||[N|| = 1 so N measures the direction
of change of b, clearly ||B|| =1

® B =T X N is called Binormal vector field

% is called Normal vector field,

® Theorem: for a unit curve b vector fields
T, N, B form a frame at each point, this is called
Frenet Frame field on b

e *Curvature k of a curve b at a point is || T’||
at that point, clearly there is a one-one cor-
respondence between the curve "turn rate” or
‘bending rate” and curvature at the point

e Torsion 7 of a curve b at a point is —B’.N at
that point, there is a one-one correspondence
between the curve ‘twist rate” or ‘rotating rate’
and Torsion at the point

e *Theorem

T’ 0 kK 0 T
N|l=|—-k 0 <t| |N
B’ 0 —7 0| |B

® k =0 = b is a straight line

® a curve a is plane curve if it lies entirely
on a plane i.e. 3 vectors p and g such that
((b(t) —p)g=0Vt

e Theorem: if k > 0, b is a plane curve iff
T = 0 at every point

e Theorem: if T = 0, k > 0 and is constant
then b is part of a circle of radius }

4.1.2 Arbitrary speed curves

e if a(t) is a arbitrary speed curve (regular)
then it can be reparametrised to unit speed
curve a(s(t))this concept is use for below and

v = % is speed of the curve as b’(s) =

(a(t(s)) = a'(t) £ =1

e we define T, N, B, k, T of a(t) to be equiva-
lent to that of a(s) i.e T = T(s), k = k(s) ...
e sonow T/ = (T(s)) = T’(s)% = ovT’ and
so on for others i.e. correct it by multiplying it
with v

o Theorem same rule as above holds for franet
frame also i.e

T’ 0 kK 0 T
N|=v|—-k 0 <| |N
B’ 0 -1 0 B

e for a reggular curve a
1. T =d'l||d||
2. k=|la" xa”||/||a"|]?
3. B=a’' x a’l||a’ x a”||

4. t=(a’xa").a"l||a’ x a”|?



4.2 *Covariant derivative

e *Covariant derivative: of vector field W
wrtv, = VoW = W/ (p + tv)|i—o ie. it gives
initial rate of change of W(p) as it moves in v
direction

oif W =
Y ov[wi]Ui(p)
e clealy his opeation is linear and obeys Lib-
nizian rule

(wl, wr, ZU3) then va =

e now if v, = V(p), then covatiant derivative
is like operating a vector field on a vector field

4.3 Frame fields

e Frame fields: Vector Fields Ej, E;, E3 in R3
constitute a frame field if E;.E; = J;; at each
point eg: spherical frame fields, cylindrical
frame fields

5 Transforms

e [sometry F: R3 — R3® such that

d(E(p),F(q)) = d(p,q) ¥V p.q

e eg: Translation: T,(p) = p + a for fixed a,
Rotation :Ryye(p1,p2,p3) = (picos(0) —
p2sin(0), p1sin(0) + pacos(0), p3)

e Orthogonal Transformation C : R® — R3
such that C(p).C(g) = p.q and is linear

eg: Rotation

® Lemma: if C is an orthogonal transformation
then C is an isometry

e Lemma: if F is an isometry and F(0) = 0
then F is an orthogonal transformation

6 *Surfaces

e Coordinate patch x: D — R3 (D is any open
set in R? that is one-one and regular (i.e. x* is
also one-one)

e *Proper patch x: a coordinate patch with
x~1:x(D) — D is continuous

e *Surface in R3 is a subset M such that for
each point p of M there exist a proper patch in
M whose image contains a neighborhood of p
in M

e clearly if x(u,v) = (u,v, f(u,v) where f is
real differentiable function then x is a patch ,
this type of patch is called Monge patch

e A surface which is proper patch in its self is
called a Simple surface

e *Theorem: M : g(x,y,z) = c is a surface iff
dg # 0V peM

(proof by implicit function theorem)

e patch computation: M is a surface iff M is

one-one and Jacobian matrix of M has rank 2

e partial velocity functions: x, = g%

dx; 9xp 9 dx1 0x2 90
(it B 52) w0 = B = (30, %52, 32) these
essentially give tangent vectors in # an v direc-

tions at a point in x

e Tangent vector to a plane M v,: if peM and
v is initial velocity of some curve in M (i.e. a
curve that is on the surface itself)

e *Lemma: if x(uy,v9) = p and v, is tangent
vector to x iff v, can be expressed as linear
combination of x;, (#, v9) and x, (o, vo)

e Euclidean vector field Z: is a vector field de-
fined for all points on a surface M in R3 and
assigns Z(p), tangent vector to p (basically a
tangent vector map defined on a surface)

e Tangent vector field on M V: a euclidean
vector field on M for which V(p), is tangent
toM

e Normal vector field on M N: a euclidean
vector field on M for which N(p), is orthogo-
nal to tangent plane of M at p (T, (M))

e clearly for M : g = c the gradient(g) vector
field forms a normal vector field

e Manifold* (M,P): in n dimensions, M is a set
with P being a collection of abstract patches
(functions D — M that is 1-1 where D is a
open set of IR?) which satisfy:

1. The covering property : The images of
patches in P cover M



2. The smooth overlay property : for any
patches x, y in P functions y~!x, x 1y are
euclidean differentiable (differentiable in
euclidean space) and defined are on open
sets of IR”

3. The Hausdorff property : for any p # g
in M there are disjoint patches x and y in
P with pex and gey

e clearly manifold generalizes the concept of
surface (surface in R? is just 2-D manifold:
(surface point set, set of patches that cover it) )

7 *Curvature

e *Shape operator S: for a surface M and p
on it and V, tangent to it we have S,(v) =
—V ,U where U is the unit normal vector field
on neighbourhood of p in M

clearly as U is unit normal to tangent plane at
p V,U tells us how U changes in v direction
i.e. how tangent plane is changing (in direc-
tions) giving us a local picture of how M itself
is changing at p

e Lemma: shape operator is a liner operator
ie. Sp:T,(M) — T,(M)

e * Normal curvature k(u) = S(u).u where u
is the unit vector tangent to M at peM

e lemma: for a curve a in M and unit normal
vector U at a pointin a a”’U = S(a’)a’

from for a given curve on a surface with given
velocity then its acceleration in normal direc-
tion is entirely defined by the surface

e from above lemma if we define u =
a’(0) (initial velocity) then k(u) =
sw)u = s@)a = d'U =
k(0O)N(0)U(p) (k is curvature of a curver)

= k(0).cos(y) (since N and U are both unit
vectors) so now if we orient a or rather take a
to be in plane determined by U(p) and u = a’
only then # = 0 or 7 only thus gives geomet-
rical meaning to normal curvature

e Principle curvatures ki and kp: the maxi-
mum and the minimum values of k(u) of M

at a point p and the directions in which they
occur is the principal directions

e Umbilic point p: of M if umbilical if k(u) is
constant in all directions at p

e * Theorem: now as shape operator is linear
operator it can be expressed in matrix form for
this : if p is not an umbilical point then:

1. Principal directions (of k1 and k) are or-
thogonal

2. These directions are eigenvectors of S,
with kq and k; as eigenvalues

e * Gaussian curvature K: at a point p is equal
to det(S,) thus is a function on M

e * Mean curvature H : at a point p is equal to
1/2 trace(S,)

e Lemma : K = kik; and H = 3 (k1 + k2)

® Theorem: if v and w are linearly indepen-
dent tangent vectors at a point p of M then:

S(v) X S(w) =K(p)v x W
S(v) Xw+v X S(w) =2H(p)v X w

this can be use to formulate formulas for K and
H

e Corollary ki, k, = H+ vVH? — K

7.1 Curvature computation

e For a surface M if

E=x,x, F=x,x, G=x,.x
_ xuyXxy
U= ol
l=Ux,, m=Ux, n=Uxy,
then
_ In—m?
K= EG—F?

H — Gl+En—2FM
— T2(EG-P?)



8 Tensors

8.1 Definitions

n
e Einstein summation convection Z uixi =
i=1

a;x' i.e. summation symbol is just removed
(here dimension of the space should be known
(n))

e Dummy index: any index which is repeated
in a given term and which can be replaced by
other index without changing the expression

e Free index: index occurring only once in any
given term
e Kronecker delta:
1 ifi=j
0ij = o ]
0 ifi #j

e Contra-variant Vectors: if A; in X coordinate
system are transformed to A; in Y coordinate
system by rule:

A; =

v
S

Aj

Q|

Xi

e Covariant Vectors: if A; in X coordinate sys-
tem are transformed to A; in Y coordinate sys-
tem by rule:

- ]
A=A
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