Differential Geometry

Yashas.N

Contents

1	Introduction	1
1.1	Definitions	1
1.2	Basics	2
2	Forms	2
2.1	1-forms	2
	Differential forms	2
3	Mapping	3
4	Frame fields	3
4.1	Curves and Frame fields	3
4.2	*Covariant derivative	4
4.3	Frame fields	4
5	Transforms	4
6	*Surfaces	4
7	*Curvature	5
7.1	Curvature computation	6
8	Tensors	6
8.1	Definitions	6

1 Introduction

1.1 Definitions

• Euclidean space: \mathbb{R}^n metric space with norm: $||x|| = \sqrt{(x_1^2 + x_2^2 + x_3^2 \cdots + x_n^2)}$

now for \mathbb{R}^3 Euclidean space:

• Scalar field *V* assigns each point in \mathbb{R}^3 to a corresponding scalar

• Vector field $V : \mathbb{R}^3 \to \mathbb{R}^3$ assigns each point in \mathbb{R}^3 to a corresponding vector eg: natural frame fields: $U_1 = (1,0,0)_p, U_2 = (0,1,0)_p, U_3 = (0,0,1)_p$ Then every vector field $v(p) = \sum_{i=1}^3 v_i(p)U_i$ where v_i is scalar field

• Tangent vector V_p is a vector in V direction at point p i.e. $(v_1, v_2, v_3)_{(p_1, p_2, p_3)}$

1.2 Basics

• Directional derivative $v_p[f]$: for scalar field f directional derivative is the rate of its change at p in v direction so:

$$v_p[f] = \frac{d}{dt}(f(p+tv))|_{t=0}$$

here p + tv is the line at p in v direction so at t = 0 line is at p hence the definition makes sense

• now if v_p is chosen as the vector from vector field V i.e. $V(p)_p$ then direction derivative in a way give change of scalar field with respect to (w.r.t) vector field at p in a sense it is like operating *vector field on scalar field*

• if $v_p = (v_1, v_2, v_3)_{(p_1, p_2, p_3)}$ Then

$$v_p[f] = \sum_{i=1}^3 v_i \frac{d}{dx_i}(f)(p)$$

• clearly directional derivative is linear and $v_p[fg] = v_p[f]g + fv_p[g]$ (Libnizian rule)

• **Curve** a : open interval of $\mathbb{R} \to \mathbb{R}^3$ and a is differentiable i.e. if $a(t) = (a_1(t), a_2(t), a_3(t))$ then each $a_i(t)$ is differentiable real function e.g.. straight line a(t) = p + tV • $a'(t) = a'(t)_{a(t)}$ i.e a' is a tangent vector at a point in direction of rate change of a

• Re-parametrisation if *I*, *J* are open intervals in \mathbb{R} , $a: I \to \mathbb{R}^3$ is curve and $h: J \to I$ is a differentiable function then b(s) = a(h(s)) is a curve same as a but different velocity i.e.

$$b'(s) = \frac{dh}{ds}a'(h)$$

- Lemma $a'(t)[f] = \frac{d}{dt}(f(a))(t)$
- a curve *a* is **regular** if $a' \neq 0$

2 Forms

2.1 1-forms

• 1-form ϕ : function from set of all tangent vector to \mathbb{R} that is linear at each point i.e at p $\phi = \phi_p$ then $\phi_p(aV + bW) = a\phi_p(V) + b\phi_p(W)$

• so if $v_p = V(p)_p$ then 1-form acts on an vector field also converting it to a scalar in a way *vector field to scalar field*

• df : for a differentiable function define 1form $df(v_p) = v_p[f]$

• now $dx_i(v_p) = v_i$ for i = 1, 2, 3

• as 1-forms are linear at a point \implies if $\psi(v_p) = f_1 dx_1 + f_2 dx_2 + f_3 dx_3(v_p) = f_1(p) dx_1(v) + f_2(p) dx_2(v) + f_3(p) dx_3(v)$ then ψ is a 1-form

- every 1-form $\phi = \sum f_i dx_i$ where $f_i = \phi(U_i)$
- so $df(v_p) = \sum \frac{\partial f}{\partial x_i}(p) dx_i(v) d$ Thus $df \equiv \sum \frac{\partial f}{\partial x_i} dx_i$

2.2 Differential forms

• if T_p is the vector space containing all tangent vectors at point p then 1-forms is a linear functional on this space

• going with the flow of 1-form we define other forms as linear in $T_p \times T_p$, $T_p \times T_p \times T_p$ etc.

• Wedge product : it is a operation on two 1forms defined by $dx_i \wedge dx_j(v) = dx_i(v)dx_j(v)$ and $dx_i \wedge dx_j = -dx_j \wedge dx_i$

• now other forms can be obtained by this wedge product i.e. 1-form \wedge 1-form gives 2-form,

1-form \land 2-form gives 3-form, etc

• so 1-form = fdx + gdy + hdz

2-form = f dx dy + g dy dz + h dx dz3-form = f dx dy dz

• Exterior derivative : of 1-form ($\phi = \sum f_i dx_i$) = 2-form $d\phi = \sum df_i \wedge dx_i$ so exterior derivative can be used to convert 1-form to a 2-form, 2-form to 3-form ... etc

 \bullet Theorem: for function f 1-forms ψ and ϕ then

1.
$$d(f\phi) = df \wedge \phi + fd\phi$$

2.
$$d(\phi \wedge \psi) = d\phi \wedge \psi - \phi \wedge d\psi$$

•

1.
$$df \leftrightarrow grad(f)$$

- 2. if $\phi(1 form) \leftrightarrow V$ then $d\phi \leftrightarrow curl(V)$
- 3. if $\eta(2 form) \leftrightarrow V$ then $d\eta \leftrightarrow div(V)dxdydz$

3 Mapping

• Mapping $F : \mathbb{R}^n \to \mathbb{R}^m$ such that $F(p) = (f_1(p), f_2(p), \dots, f_n(p))$ then each f_i is differentiable real function

• **Tangent map** of $F : F * (v_p)$ is the initial velocity of curve $t \to F(p + tv)$ this sends tangent vectors in \mathbb{R}^n to tangent vectors in \mathbb{R}^m

• $F * (v) = (v[f_1], v[f_2], \dots, v[f_n])_{F(p)}$

• clearly tangent map is linear thus it is a linear transformation from from and to Tangent vector spaces

• *F* is regular iff *F** is one-one i.e. Jacobian matrix of has rank equal to domain space

4 Frame fields

• frame: a set of 3 unit vectors that are mutually perpendicular to each other in \mathbb{R}^3

• attitude matrix of a frame *A*: coordinate matrix of a frame (clearly it is orthogonal i.e $A \cdot A^T = I$

4.1 Curves and Frame fields

• a curve *a* is said to have unit speed if $||a'(t)|| = 1 \forall t$ in domain

• ***Theorem**: if *a* is a regular curve in \mathbb{R}^3 then there exist as reparametrisation *b* of *a* such that *b* is a unit speed curve (proof by inverse function theorem) now b = a(s(t)) which has unit length then s(t) is the called arclength function of *a* as it converts ||a'|| to one

• Vector field on a curve *Y*: (for a curve *a*) assigns a Tangent vector $Y(t)_{a(t)}$ for every point a(t)

• *Y* is parallel vector field to *a* id $||Y(t)|| = 1 \forall t$

4.1.1 Franet fields

• if *b* is a unit speed curve then for *b*:

• T = b' is called **Tangent vector field**, clearly ||T|| = 1 so *T* tells us the direction of change of *b*

• T' = b'' is called **Curvature vector field**, it measures how the curve is changing

• $N = \frac{T'}{\|T'\|}$ is called **Normal vector field**, clearly $\|N\| = 1$ so N measures the direction of change of b, clearly $\|B\| = 1$

• $B = T \times N$ is called **Binormal vector field**

• **Theorem**: for a unit curve *b* vector fields *T*, *N*, *B* form a frame at each point, this is called Frenet Frame field on *b*

• ***Curvature** k of a curve b at a point is ||T'|| at that point, clearly there is a one-one correspondence between the curve 'turn rate' or 'bending rate' and curvature at the point

• Torsion τ of a curve b at a point is -B'.N at that point, there is a one-one correspondence between the curve 'twist rate' or 'rotating rate' and Torsion at the point

• *Theorem

1'		0	ĸ	0	T
N'	=	-k	0	τ	N
$\begin{bmatrix} T'\\N'\\B'\end{bmatrix}$		0	- au	0	$\begin{bmatrix} T\\N\\B\end{bmatrix}$

• $k = 0 \implies b$ is a straight line

• a curve *a* is plane curve if it lies entirely on a plane i.e. \exists vectors *p* and *q* such that $((b(t) - p).q = 0 \forall t$

• Theorem: if k > 0, b is a plane curve iff $\tau = 0$ at every point

• Theorem: if $\tau = 0$, k > 0 and is constant then *b* is part of a circle of radius $\frac{1}{k}$

4.1.2 Arbitrary speed curves

• if a(t) is a arbitrary speed curve (regular) then it can be reparametrised to unit speed curve $\overline{a}(s(t))$ this concept is use for below and $v = \frac{ds}{dt}$ is speed of the curve as b'(s) = $(a(t(s)) = a'(t)\frac{dt}{ds} = 1$

• we define T, N, B, k, τ of a(t) to be equivalent to that of $\overline{a}(s)$ i.e $T = \overline{T}(s), k = \overline{k}(s) \dots$

• so now $T' = (\overline{T}(s))' = \overline{T}'(s)\frac{ds}{dt} = vT'$ and so on for others i.e. correct it by multiplying it with v

• **Theorem** same rule as above holds for franet frame also i.e

$\left[T'\right]$		0	k	0	$\begin{bmatrix} T \end{bmatrix}$	
N'	$= \mathbf{v}$	-k	0	τ	N	
B'	$=\mathbf{v}$	0	- au	0	$\begin{bmatrix} T \\ N \\ B \end{bmatrix}$	

• for a reggular curve *a*

1.
$$T = a'/||a'||$$

2. $k = ||a' \times a''||/||a'||^3$
3. $B = a' \times a''/||a' \times a''||$
4. $\tau = (a' \times a'').a'''/||a' \times a''||^2$

4.2 *Covariant derivative

• ***Covariant derivative**: of vector field *W* w.r.t $v_p = \nabla_v W = W'(p + tv)|_{t=0}$ i.e. it gives initial rate of change of W(p) as it moves in *v* direction

• if $W = (w_1, w_2, w_3)$ then $\nabla_v W = \sum vv[w_i]U_i(p)$

• clealy his opeation is linear and obeys Libnizian rule

• now if $v_p = V(p)_p$ then covatiant derivative is like operating a vector field on a vector field

4.3 Frame fields

• Frame fields: Vector Fields E_1, E_2, E_3 in \mathbb{R}^3 constitute a frame field if $E_i.E_j = \delta_{ij}$ at each point eg: spherical frame fields, cylindrical frame fields

5 Transforms

• Isometry F: $\mathbb{R}^3 \to \mathbb{R}^3$ such that $d(F(p), F(q)) = d(p, q) \forall p, q$

• eg: Translation: $T_a(p) = p + a$ for fixed a, Rotation $:R_{xy\theta}(p_1, p_2, p_3) = (p_1 cos(\theta) - p_2 sin(\theta), p_1 sin(\theta) + p_2 cos(\theta), p_3)$

• Orthogonal Transformation $C : \mathbb{R}^3 \to \mathbb{R}^3$ such that C(p).C(q) = p.q and is linear eg: Rotation

• Lemma: if *C* is an orthogonal transformation then *C* is an isometry

• Lemma: if *F* is an isometry and F(0) = 0 then *F* is an orthogonal transformation

6 *Surfaces

• Coordinate patch $x: D \to \mathbb{R}^3$ (D is any open set in \mathbb{R}^2 that is one-one and regular (i.e. x* is also one-one)

• *Proper patch x: a coordinate patch with $x^{-1}: x(D) \rightarrow D$ is continuous

• *Surface in \mathbb{R}^3 is a subset *M* such that for each point *p* of *M* there exist a proper patch in *M* whose image contains a neighborhood of *p* in *M*

• clearly if x(u, v) = (u, v, f(u, v)) where f is real differentiable function then x is a patch , this type of patch is called **Monge patch**

• A surface which is proper patch in its self is called a **Simple surface**

• *Theorem: M : g(x, y, z) = c is a surface iff $dg \neq 0 \forall p \in M$

(proof by implicit function theorem)

• patch computation: *M* is a surface iff *M* is one-one and Jacobian matrix of *M* has rank 2

• partial velocity functions: $x_u = \frac{\partial x}{\partial u} = (\frac{\partial x_1}{\partial u}, \frac{\partial x_2}{\partial u}, \frac{\partial x_3}{\partial u})$, $x_v = \frac{\partial x}{\partial v} = (\frac{\partial x_1}{\partial v}, \frac{\partial x_2}{\partial v}, \frac{\partial x_3}{\partial v})$ these essentially give tangent vectors in u an v directions at a point in x

• Tangent vector to a plane $M v_p$: if $p \in M$ and v is initial velocity of some curve in M (i.e. a curve that is on the surface itself)

• *Lemma: if $x(u_0, v_0) = p$ and v_p is tangent vector to x iff v_p can be expressed as linear combination of $x_u(u_0, v_0)$ and $x_v(u_0, v_0)$

• Euclidean vector field *Z*: is a vector field defined for all points on a surface *M* in \mathbb{R}^3 and assigns $Z(p)_p$ tangent vector to *p* (basically a tangent vector map defined on a surface)

• Tangent vector field on M V: a euclidean vector field on M for which $V(p)_p$ is tangent to M

• Normal vector field on M N: a euclidean vector field on M for which $N(p)_p$ is orthogonal to tangent plane of M at p ($T_p(M)$)

• clearly for M : g = c the gradient(g) vector field forms a normal vector field

• **Manifold**^{*} (M,P): in n dimensions, M is a set with P being a collection of abstract patches (functions $D \rightarrow M$ that is 1-1 where D is a open set of \mathbb{R}^2) which satisfy:

1. The covering property : The images of patches in P cover M

- The smooth overlay property : for any patches *x*, *y* in P functions *y*⁻¹*x*, *x*⁻¹*y* are euclidean differentiable (differentiable in euclidean space) and defined are on open sets of ℝⁿ
- 3. The Hausdorff property : for any $p \neq q$ in M there are disjoint patches *x* and *y* in P with $p \in x$ and $q \in y$

• clearly manifold generalizes the concept of surface (surface in \mathbb{R}^3 is just 2-D manifold: (surface point set, set of patches that cover it))

7 *Curvature

• *Shape operator *S*: for a surface *M* and *p* on it and *V_p* tangent to it we have $S_p(v) = -\nabla_p U$ where *U* is the unit normal vector field on neighbourhood of *p* in *M*

clearly as *U* is unit normal to tangent plane at $p \nabla_p U$ tells us how *U* changes in *v* direction i.e. how tangent plane is changing (in directions) giving us a local picture of how *M* itself is changing at *p*

• Lemma: shape operator is a liner operator i.e. $S_p: T_p(M) \to T_p(M)$

• * Normal curvature k(u) = S(u).u where u is the unit vector tangent to M at $p \in M$

• lemma: for a curve *a* in *M* and unit normal vector *U* at a point in *a* a''U = S(a')a' from for a given curve on a surface with given velocity then its acceleration in normal direction is entirely defined by the surface

• from above lemma if we define u=a'(0)(initial velocity) then k(u)_ a''U s(u).u=s(a').a'== k(0)N(0)U(p) (k is curvature of a curver) $= k(0).cos(\eta)$ (since N and U are both unit vectors) so now if we orient *a* or rather take *a* to be in plane determined by U(p) and u = a'only then $\eta = 0$ or π only thus gives geometrical meaning to normal curvature

• Principle curvatures k_1 and k_2 : the maximum and the minimum values of k(u) of M

at a point p and the directions in which they occur is the principal directions

• Umbilic point p: of M if umbilical if k(u) is constant in all directions at p

• * **Theorem**: now as shape operator is linear operator it can be expressed in matrix form for this : if p is not an umbilical point then:

- 1. Principal directions (of k_1 and k_2) are orthogonal
- These directions are eigenvectors of S_p with k₁ and k₂ as eigenvalues
- * **Gaussian curvature** K: at a point p is equal to *det*(*S*_{*p*}) thus is a function on *M*

• * **Mean curvature** H : at a point p is equal to 1/2 *trace*(*S_p*)

- Lemma : $K = k_1 k_2$ and $H = \frac{1}{2}(k_1 + k_2)$
- Theorem: if *v* and *w* are linearly independent tangent vectors at a point p of M then:

$$S(v) \times S(w) = K(p)v \times W$$
$$S(v) \times w + v \times S(w) = 2H(p)v \times w$$

this can be use to formulate formulas for K and H

• Corollary $k_1, k_2 = H \pm \sqrt{H^2 - K}$

7.1 Curvature computation

• For a surface *M* if

$$E = x_u \cdot x_u \quad F = x_u \cdot x_v \quad G = x_v \cdot x$$
$$U = \frac{x_u \times x_v}{\|x_u \times x_v\|}$$
$$l = U \cdot x_{uu} \quad m = U \cdot x_{uv} \quad n = U \cdot x_{vv}$$

then

$$K = \frac{ln - m^2}{EG - F^2}$$
$$H = \frac{Gl + En - 2FM}{2(EG - F^2)}$$

8 Tensors

8.1 Definitions

• Einstein summation convection $\sum_{i=1}^{n} a_i x^i =$

 $a_i x^i$ i.e. summation symbol is just removed (here dimension of the space should be known (n))

• Dummy index: any index which is repeated in a given term and which can be replaced by other index without changing the expression

• Free index: index occurring only once in any given term

• Kronecker delta:

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

• Contra-variant Vectors: if A_i in X coordinate system are transformed to $\overline{A_i}$ in Y coordinate system by rule:

$$\overline{A_i} = \frac{\partial \overline{x^j}}{\partial x_i} A_j$$

• Covariant Vectors: if A_i in X coordinate system are transformed to $\overline{A_i}$ in Y coordinate system by rule:

$$\overline{A_i} = \frac{\partial x^j}{\partial \overline{x_i}} A_j$$

References

[1] Barrett O'Neill: Elementary Differential Geometry,Elsevier Academic press,2,2006.