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1 Power Series
e P(z) =

o0
Z anz".
n=o0

e If P(z) converges at z = a then it converges
absolutely for all |z < |al.

Qo + 4,z + a,z2* + azz3.-- =

e If P(z) diverges at z = d then it diverges ab-
solutely for all |z| > [d].

e If two power series A(z) = Z anz™ and
n=o0

o0

B(z) = Z bnz™ agree on an infinite sequence
n=o

(# 0) converging to zero then they are same i.e.

ai = bi Vi.

e In general for Py (z) = Z an(z—b)™ above
n=o0

holds as in displacement or translation of b to
oie. Py(z)=P(w) forw=2z—b.

e if radius of convergence of P(z) = Z anz"
n=o0

is R then:

m R= lim |[-%» |,
n—oo | On+1

m R=lim |—%~|.
n—oo |an|1/n

] R = llm ;1/“ .
n—oo | limsup |anq|

e Radius of convergence of the power series of
f(z) at k is equal to distance between k and
closest singularity of f(z) to k.

2 Transformations

21 7M.

o w=2z"=rneind,

e so from above each z is magnified |z|™ times
and rotated n arg(z) times in the plane i.e.



2.3 Trigonometric functions

e Images of circles are circle (with expanded or
contracted radius),lines are lines

e Most geometric shapes just expand /diminishe
(amplified) and gets rotated (twist)

o w = e% = e¥elY = eXcosy +1i eXsiny =

u—+iv.

2 3
eef=1+z+5+5+...
and radius of convergence =oo.

e e? takes all values in C infinitely many times
except zero i.e. range(e®)=C — {o}.

e if x is constant then u* +v* =e* =r
== horizontal lines are mapped to circle.

e if y is constant then ;; =tany or v=cu
— vertical lines are mapped to lines passing
through origin (not including the origin).

e every other line is mapped to a spiral centred
at origin (not including).

z2 z4 Z
cos(z)=1— —+ —— —.
2! 4! 6!
u .
elZ_'_e*lZ
2
] z3  z5  zZ7
sin(z)=z— —+ ———.
3t 57
eiz efiz
2i

de cos(z —m/2) =sin(z).
e cosh (z) = cos (iz).
e sinh (z)
e 50 exploring only one of trigonometric func-
tions namely cos z is sufficient

e*e Yt+e ™eY

2
ceY_

isin (iz).

® now cos(x +1iy) =

% cos(x) — 1%9 sin(x)
coshy cosx —isinhysinx =u—+iv.
e for z =x+1iy and w = cos(z) = u+iv if
Y = Yo. is kept constant then

W g
cosh? y, sinh® y,
e 5o every horizontal line is transformed to an
ellipse with foci’s 1.
(as a =sinhy, b=coshy, =— c=b*—a*=
1 (unit from origin) so foci’s = (1,0), (—1,0).)

e similarly x = x,. is kept constant then
u?_ _ vZ _

€082 X, sin®x, L.

e so every vertical line is transformed to hyper-

bola with foci’s +1.

2.4 log(z).

e it denotes the inverse function of exponential

e log(re'®) =In(r) + 0.



e Clearly log is a multifunction as log(re'®) =
In(r) +1i(0 4 2nm).
e properties of multifunctions:

m a region in range where multifunction takes
ordinary single value is called a branch.

m typically branches are connected regions
(simply or multiply)

m ( is branch point of multifunction if after a
revolution around the point in domain the mul-
tifunction changes its values on the original ob-
served point

m ( is algebraic branch point of f(z) if f(z)
returns to original observed value after N rev-
olutions around (, its order is N — 1, a simple
branch point has order 1.

m ( is logarithmic branch point if order is oo
i.e. the original value is not restored by any
number of revolution around the point.

m any curve drawn from branch point to oo is
called a branch cut, typically is -ve real axis.

m eg: zn is one—n mutifunction has branch
point o of order n — 1, z* for 7 irrational has
logarithmic branch point of o.,

» a function can have more than one branch
point eg: v/z*>+1=/(z—1)(z+1) has i as
simple branch points.

m if a complex function or a branch of multi-
function can be expressed as power series then
the radius of convergence is distance to the
nearest singularity or branch point.

e log(z) has logarithmic branch point at o.

e Log(z) = In|z| +iArg(z) where the branch
cut is -ve real axis and —7 < Arg(z) < 7 is
called principle branch.

e continuity of Log(z) breaks down at
Arg(z) =m.
e Log(1+2z) = z—zf—i—zf—%‘—i—... is a

power series centered at 1 with radius of con-
vergence 1 converges on this unit circle except
for z = —1.

e other branches of log(z) can be explored by
writing log(z) = Log(z) + 2nri.

° Zk _ eklog(z) eznﬂ:kiekl_og(z)
e2"ki[zP] where [z¥] denotes root in principle
branch. thus

m zP/4 = eP/d2nmi[zp/q],
m Now for complex powers

a—i—ib] (a+ib)(Log(z))

(z =e
_ e(a+ib)(ln(r)+19)
—e® In(r)e—beei(a9+b In(r))

S0 [Za—i—ib] _ |Z|ae—b Arg(z)ei(a Arg(z)+b In|z|)

izmna

a+ib _ e e

and z —znnb[za—l—ib]

2.5 Geometric transforms

e translation by v : J,(z) = z + v translates

0— V.
e rotation about origin by 0 : R (z) = e'°z.
e rotation about w by 6. :
RY, =JwoRy o] w(z).
e Properties:
m {Jw ]} forms a group under composition
m RS =T, 0R® wherev=w(1—e?)
. i.e. rotation about any point is equal to a rota-
tion around origin proceeded by translation.

= R§ o RY = eT®  where ¢ =
aet®(1—e®)+b(1—e'?)

(1—et(0+d))
mif © + ¢ = z2nm then RgoRg) = J, where

v=(b—a)(1—el?).
e Reflection about a line L; = 9y ;.

e Reflection about real axis Ry, = Z.
e Reflection about line ax + by =cis

(b —ia)z+ 2ic
b+ia

9Ciax+by=c =

(can be done by transforming line to real axis by
translation and rotation then conjugation and
followed by inverse back to same line transfor-
mation).

e Properties:

m If L1 and L2 intersect at O, and the angle
from L1 to L2 is ¢., then PRy, 0 PRy, is a rota-
tion of 2¢p about O i.e. RZO‘D.

m If L1 and L2 are parallel, and v is the per-
pendicular vector to both lines, connecting L1
to L2 (i.e. distance vector), then SRy, o R, is a
translation of 2v i.e. J,,.



1
2.6 2.

1

e before studying 7 we can study inversion
about a circle :

® Jc(z) is the inversion of points in circle ¢
centered at q with radius R i.e. it transforms
interior of circle to exterior and points on circle
remain fixed

e some defining properties of J¢ (inversion of
about circle ¢ of radius R and centred at q.) :

m J — Q.

m if z is at distance p from q then it is moved
to distance R?/p along same direction as z from
qie.

Je(2)

RZ

z—q
(as (Z— q)(Je(z) — q) = R2)
e Properties of inversion (J¢ centred q radius R.):

m inversion is involutory i.e. Jc 0 Jc(z) =z or
=1L

mif d=Jc(a) and b = Jc(b) then Adqb is
similar to Aaqb.

m every line that does not pass through ( is
mapped to a circle passing through ¢.

m as inversion is involutory it swaps the above
point i.e. a circle passing through q is mapped
to a line not passing through ¢.

m A circle not passing through ¢ is mapped to
another circle not passing through q i.e. inver-
sion preserves circles.

m if a circle k cuts circle ¢ at a and b at
right angles i.e. k is orthogonal to ¢ then k
is mapped to itself i.e. inversion maps orthog-
onal circles to c to itself.

» Inversion in a circle is anticonformal map

m If a and b are symmetric with respect to cir-
cle k then their inversion images @ and b are
also symmetric with respect to the inversion
image circle k of k.

m i.e. Inversion maps any pair of orthogonal
circles to another pair of orthogonal circles.

m also if a and b are symmetric w.r.t line L,
(i.e. are reflections) then their inversion images
are also symmetric to the inversion line L,.

e now % = (%) so 2

Z = is reflection of inversion
centered at origin with unit radius on real axis,
so all properties of inversion holds as reflection
preserves shapes.

m now as both inversion and conjugation are
anticonformal implies 1/z is a conformal map
e define inverse point w.r.t. circle C(; r) =
{zllz — zo| = R} as a and a* are inverse points
wrt C(z Ry if @ — a* under Jc, ,, (2) ie. if

a* =z, + =R or (a* —z,)(a—z,) = R2.
o

2.7 Mobius Transforms

az+b
M(z) =
(z) cz+d
~a ad—bc 1
T c c2 z+4
=Jase©Az0oJyo0Jasc(z)
where A = 24=b¢ 4 = {|z| = 1}.

e The only shape changing transformation in
M(z) is conjugate inversion, so all symmetries
and properties of inversion follow to mobius
transform.

e Properties

m every mobius transform maps circles and
straight lines onto circles and straight lines.

m above point may not be same order i.e. some
circles can be mapped to straight lines and vis-
a-viz. namely a straight line or a circle maps
onto a straight line if it passes through the point
z = —d/c, and onto a circle if it does not i.e.
lines and circles not passing trough —d/c are
mapped to circle.



m mobius transform is conformal

m more over mobius transforms are the only
transforms that map circles to circles

m To be specific A Mobius transformation
maps an oriented circle C to an oriented cir-
cle C in such a way that the region to the left of
C is mapped to the region to the left of C.

» Symmetric principle: If two points are sym-
metric with respect to a circle i.e. inverse points
w.r.t a circle, then their images under a Mobius
transformation are symmetric with respect to
the image circle. transformation are symmetric
with respect to the image circle.

m every mobius transform has only 2 fixed
points

m there exist a unique mobius transform send-
ing any three points to any three points.

e the coefficients of a mobius transform
{a,b,c,d} are not unique as any k +# o.
{ka, kb, kc, kd} gives same mobius transform

(z—a)(b—c)
(z—c)(b—a)*

® p,q,T,s are mapped to P, 4, ¥, § by a Mobius
Transformation iff

e define cross ratio as [z, a, b, c]| =

[P/ q,r, S] = [f)/ qr?/ §]'

i.e. Mobius transforms are cross-ratio invariant.

e Unique Mobius transform M(z) = w that
transforms a — r,b — s,¢c — tis
[WI s, t] = [ZI a, b/ C]
or
z—a)(b—¢c) (w—r)(s—1t)
(z—c)(b—a) (w—t)(s—r1)

2.8 More on Mobius Transforms

e now as coefficients of mobius transform are
not unique if ad —bc = 1 in M(z) then we
can associate a matrix for each of these mo-
bius transforms from which resembling matrix
properties can be associated to properties of
transform i.e.

M(z) = az+b

cz+d

+«——[M]= [2 3}

e Properties:

m M; = M, o M,(z) them [M;] = [M,][M,].

m if inverse of M(z) is M~ *(z) then [M ] =
(M~

m identity transform [I] =[1, 0; 0, 1].

m Thus M(z) of form a group (for ad —bc #
o,=1) as SIL(R, 2) is a subgroup of GL(R, 2).
e Homogeneous coordinates z = J* for v € C.
e [M]is a liner transform on homogeneous co-
ordinates of z that transforms homogeneous
coordinates of z to homogeneous coordinates
of M(z) ieifz=v./v,, M(z) =W = p;/p>-

)

(although homogeneous coordinates may not
be unique but their ratios ought to be )

* Properties:

mz = (vq/Vv;) is a fixed point of M(z) iff
[v, Vv,]Visan eigenvector of [M].

3 Automorphisms, Conformality
and map of unit disks

e any disk or half plain can be mapped to it-
self using mobius transform i.e. under spec-
ified mobius transforms say M, we can have
M,;(D) = D for adisk D = {z|]|lz—a| < r}
and for M,(IH) = H for any half plane {z =
X + iylax + by > c} (note :

tion with restrictions, not the identity map in disk or half

this is mere a bijec-

plane).
e more over the only conformal bijections (au-
tomorphisms) of disks +— disks, half planes +—
half planes are Mobius Transforms only.
e Let C be a unit circle in C and D be the unit
disk it covers then :

m mobius transform’s are the only automor-
phisms conformal on this unit disk

» this mobius automorphism’s on unit disk
has 3 degree of freedom (only 3 real numbers
specify it)

m Now if two Mobius automorphisms on unit
disk are say M and N map two interior points



to same image points i.e. the agree on two inte-
rior points then M=N (as this takes 4 degree of
freedom from both transforms)

m if D is centered at origin then these 3 de-
grees of freedom are a pointin D (a = (x +1iy),
X,y — 2 degrees) that maps to origin and a
point e'® on the disk C (6 — 1 degree) that 1
is mapped to (ie. a=x+1iy — o, 1 €'9).

m as a is mapped to o, and mobius transform
preserves symmetry between points and their
images (inversion) we have the point 1/a is
mapped to oo (as C maps to itself, a,1/a are

symmetric w.r.t C their images should be o, c0).
k(z—a)

msonow a — o0 — M(z) = T
1/a — oo = M(z) = kZ= and as

M(1) € C = M(1)|=1 = k=¢el?
so the automorphism of unit disk (Iz|] < 1)
i.e. mobius transform is determined only by
a=x-+1iy — o (al<1) and p — 1 (pl=1) this is
given by :

M7 (z)=e ot

e now for
M(w =ﬂ
qz+p

for [p| > |q| then M(w) is an automorphism
of unit disk (transform this to M& for a = q/p and
et =p/p.)

o clearly M (z) = e!® M9 (z) so is just rota-
tion of M, = Mq(2).

e properties of Mg :

m M, is the only Mobius automorphism that
swaps a and o (i.e. Mq(a) =0,Mg(0) = a.)

m now as an inversion about circle ¢ maps
circles orthogonal ¢ to themselves (automor-
phism) thus automorphisms of unit circle can
be viewed as inversions about circles orthogo-
nal to unit circle to uncover this we break down
that as a — o and inversion circle is orthogo-
nal to unit circle the center of inversion is on
the line between a to 0 and as inversion is sym-
metric 1/a — oo we conclude that center of
inversion is 1/a.

m as M, is conformal the above inversion
should be coupled with reflection (on line per-
haps) to give the exact map, as this reflection
leaves a, o0 fixed we conclude this is reflection
about line a to o (Lq,0.)

m thus Mg =R, 0Jj.

m thus fixed points (£&) of Mg is the intersec-
tion of Ly and j.

m M is Involutory.

e if HE represents the upper or lower half
plane (Im(z) » o or <o), 6§ = A(o,1) unit
disk at origin and 0A = {|z| = 1} then :
m for fixed p € C,0 € Rif Im(B) > o then
w="f(z) = ewi.
z—B
are the only conformal maps that maps
H'T — §, B — o and real line+oco = Ry, —
QA (to see assume w| < 1 <= [|z—
BI*—lz—BI* >0 <— —2Re(z(B—B)) =
4(Im(z))(Im(B)) >o0.) .
e now if we use transform R (z) = e'"z = —z
which rotates H* to H™ we get g = fo R7(z).
02—Db
z)=e®T _—,
g(z) P
for Im(b) < o, are the only conformal maps that
map H™ — 6, b +— o and R — 0A.

e similarly if h(z) =fo Rf,r/z

N2 —
=ete Y

h(z) '



for Re(b) > o, are the only conformally maps
that map Right half plane (Re(z) > 0) — &,
Y = o.

e a Mobius transform w = az+ b/cz+ d
maps H* — H* iff a,b,c,d € R,ad —bc>o
(i.e. automorphisms of H™.)

e similar to above point a Mobius transform
w = az+b/cz+d maps H- — H™ iff
a,b,c,d € R,ad —bc <o (i.e. automorphisms
of H™.)

4 Stereographic projection

e To visually represent the whole complex
plane and the point co Riemann project the
whole complex plane to a sphere : Riemann
sphere (X) centered at origin a unit radius in 3
dimensions where the xy plane is C.

e The point N = (0,0,1) (north pole) maps to
oo (in a pseudo sense) and every other point (z)
is mapped to (2)the point of intersection of the
Riemann sphere and the line through N and
the point.

e Properties:

m Unit circle C = |z| = 1 remains fixed

m interior of C is mapped to Southern hemi-
sphere particularly o — (0,0,—1) = S.(south
pole)

m exterior of C is mapped to Northern hemi-
sphere

m A line in C is mapped to circle passing
through N particularly the tangent of this circle
at N is parallel to the line (in 3 dimensions)

m It is conformal map in accordance to an ob-
server from inside of X.

m Stereographic projection is can be bro-
ken down as inversion in the plane through
{N,z — 2} : if K is a circle centered at N of
radius 4/2 in the plane where line through N
and z passes then £ is the image Jk(z) in this
plane (this plane is considered as C for Jk(z).)

m From above it is clear that Circles are
mapped to circles in particular origin centered

circles are mapped to horizontal circles (i.e cir-
cles in planes parallel to xy. plane)
e Properties related to functions:

m Complex conjugation in C. induces a reflec-
tion of the Riemann sphere in the vertical plane
passing through the real axis.

m Inversion of C in the unit circle induces a re-
flection of the Riemann sphere in its equatorial
plane (i.e. Northern hemisphere +— Southern
Hemisphere).

m The mapping z — (1/z) in C induces a ro-
tation of the Riemann sphere about the real axis
through an angle of 7.

m properties functions like conformality at oo
can be checked through Stereographic projec-
tion.

e formulas of Projection
mif z— (X,Y,Z) then:

|z|*—1 . 2z _
- Z lzZP+1 7 X+1iY = 1+[z[2
2x+12y
1+x*+y**

m if z— (6, P) for © angle subtended around
z axis in xy plane and ¢ angle subtended at
center by N and 2 then:

az=cot(Pp/2)e® or
0 =Arg(z), ¢ =2cot™*(|z]).

5 Analyticity

o if z(x +1y) — f(z) = w(u+iv) then
df = du+idv du = J¢dx + $¥dy and dv =
Srdx+ SYdyie.

du| [0xu Oyu| |dx
[dv] B [axv ayv] [dy} )

e where the linear transform is the Jacobian
matrix of f.

e now in C if df(w) = f/(z)dz to be true f’(z)
should not depend on dz i.e. each infinitesi-
mal vector dz at z should transform to dw at
w = f(z) by the same factor f’(z) no matter the
direction of dz..

e this condition tells us that dw is just the am-
plification and rotation or twist or together am-



plitwist of dz (as f’(z) € C
f'(z)dz =r’et®’dz.)

e now if f is diffrentiable at z then f’(z) exist
so the infinitesimal map at point z is an am-
plitwist.

= dw =

e clearly amplitwist is conformal (as amplifica-
tion and twist is)

e now for the converse if a map is conformal at
z then it is not presupposed to be amplitwist at
z as the amplification may vary but if we pre-
suppose that the map is locally conformal at z
(i.e in some whole neighborhood) then clearly
the map is locally amplitwist at z (as infinitesi-
mal A is mapped to similar infinitesimal A).

e By above we define Analytic functions :
functions in C whose effect are locally (in-
finitesimal) an amplitwist or a function is ana-
lytic at z if it is diffrentiable at z and in a neigh-
borhood of z. (as diffrentiable in neighborhood
makes it locally conformal).

e Thus we have an Analytic function is Con-
formal.
e Geometric properties of Analytic function:

m infinitesimal circles are mapped to infinites-
imal circles

m A mapping between spheres represents an
analytic function iff it is conformal.

m Conformality of analytic functions break-
down near critical points (f’(z) = o.) and
branch points.
e Geometric property of general transform on
C: as jacobian is a linear transform by singu-
lar value decomposition of 2 X 2 matrices we
have the local linear transform by a complex
mapping is a stretch in direction (d), another
stretch in direction perpendicular to in (dL).
and finally a twist. in particular an infinitesi-
mal circle is transformed to an ellipse (may not
be conformal).

e C-R equations :

m now as f is analytic = f’(z) € C so mul-
tiplying by Jacobian matrix is equivalent to a
complex multiplication now as

(a+1ib)(x+1iy) = (ax—by) +i(bx+ ay)

| g e

_[Oxu Oyu| |a —b| .
.we have J = [axv Oyv} = [b a } .le.
axu = ayv, ayu = _axv.

which gives the Cartesian-Cartesian form(C-
C) now in Polar-Cartesian (P-C) form we have
f(re'®) =u+1ivand C-R equations are

Jdgv=10,Uu, OgU=—T0,V.

aef = i]‘arf.
(P-P) form f(re'®) = Re'¥ C-R equations

0poR =—71R0,¥, ROg¥ =10,R.

(C-P) form f(x +1iy) = Re'¥. C-R equations

oxR=Ro,¥, 09yR=—Ro,V.
e General properties of Analytic functions:

m if f, g are analytic then f+g,f x g,fog,f"*
are analytic when ever they are defined, in par-
ticular as f is amplitwist locally there is a 1-
1 correspondence in a neighbourhood of non
critical points to their images == that local
inverse exists.

m if f is analytic in E then so is f’ (ie. fis
infinitely differentiable in the defined region)

m every zero or an analytic point is isolated
(generally p-point of f or pre-image of p in f
doesn’t have a limit point.)

m Identity/Uniqueness Theorem: restating
the above we have, if f(z) is analytic in D and if
S set of zeroes of f(z) and if S has a limit point
in D then f(0) = o in D (in general if p-points
of f has a limit point then f(z) = p).

m Extending the above we get, if even an ar-
bitrarily small segment of curve is crushed to
a point by an analytic mapping, then its entire
domain will be collapsed down to that point
(i.e. the function is constant) (this property is
known as Rigidity)



» from above if f, g analytic agree on a curve
or more generally {an} +— a then f = g.

m if some identity of analytic function f(z)
holds when restricted to R then it holds for en-
tire C. (eg: odd and evenness.)

6 Analytic continuation

e an analytic function or a power series can be
extended (from defined) to other regions this is
analytical so called Analytic continuation.

e Analytic continuation via reflection:

m if f is an generalization of a real function
(defined on R) and is known in upper or lower
parts of real axis (in some region with some
parts of R as boundary) then it can be analyt-
ically continued by f * (z) = f(Z) in the other
half part (reflection by z part of region)(this
holds by property of rigidity of analytic func-
tions).

m In general if f maps a line (L) to another line
(f) then we can analytically continue one side
of L to the other by using the fact that points
symmetric in L map to points symmetric in L.

m similarly if f maps a circle C to circle C
then mobius transforms can be used to trans-
lated these to symmetries ie. M : C — L,
M : C — L (as composition by mobius transfor
ehic are analytic doesnt change the analyticity
of f—~ MofoM™).

e Schwarzian Reflection:

m Given a sufficiently smooth curve K, it is
possible to find an analytic function Sk (z) such
thatz € K =— Sk(z) =Z then

m Schwarz function of K = Z =
SK (Z) .

mclearlyif q € K § =
remains unchanged.

m Also as Sk just amplitwists infinitesimal
disk at ¢ € K to infinitesimal disk in § € K
we observe that for Sx|qp — qp(for p,q €
K, qp infinitesimal ) amplification = 1 and twist
= —2¢ where ¢ is the angle b/w tangent to K
at q with horizontal

Ri(z) =

Sk(q) =q = qie

» so from above we get if a is on infinitesimal
circle passing through K then a = Rk (a) is re-
flection along the tangent of K. i.e 9k near K
is sort of like Reflection in K (pseudo).

m Rk is anticonformal so PRk o PRk is con-
formal so analytic (as amplification=1) and as
PRk o Rk maps infinitesimal areas around K to
itself thus agrees with Identity so is Identity i.e.
MRk 0 Rk (z) =z.

m Now if K is a smooth enough curve to
posses Sk and any analytical map f defined
on a region bordering K such that K = f(K)
also posses Sy then we can analytically con-
tinue f around K (reflection of region by K) by
demanding points symmetric to K are mapped
to points symmetric to K by f and this analytic
continuation is given by:

F =R ofoRk.

7 Complex Integration

e we define complex integration as the gener-
alized Riemann Integration over a given path a
to b or as contour integration

e clearly integration here depends on path

e complex integration can be visualized as
weighted vector sum : if S is path from a to
b and A; s are vector decomposition (partition
of § and linearly) that form S, wj = f(mid A;)
i.e f(mid points of Aj.) then we can generalize

as
J f(Z)dZ = Z WjAj
S j—o0

e from above we get: if [f| < M in image of K.
then

< M.length of K.

L f(z)dz

e Winding number and properties :

e winding number for a closed loop L and a
point a = v(L, a) is the number of revolutions
z — a makes as it traces L (where we fixing a di-
rection for counter-clockwise revolution is +ve
and clockwise is -ve by convention)



e A simple loop is a closed curve that doesnt
intersect with itself
e now as a point moves from left to right if it
crosses a boundary of the loop and the loops
direction is downwards (upwards) the wind-
ing number increased (decreases) by 1 (here the
first entry of the point to loop is made to be in
loop moving in downwards direction).
e we define inside of a loop L to be regions
(points) where Vv[L, a] 0.
e Hopf’s degree Theorem(ristricted to C): A
loop K may be continuously deformed into an-
other loop L, without ever crossing the point p,
if and only if K and L have the same winding
number round p.
e d is a p-point of a function f if set of
pre-images of p in f contains d ie. d €
f~*(p).(pre-image)
e Argument-Principle theorem: If f(z) is an-
alytic inside and on a simple loop I' , and N
is the number of p-points (counted with their
multiplicities) inside ", then N = v(f(T"), p].
e if f analytic, f(a) —p = o and for A =
z—a fla+A)=p+ Q(Z)A™ (obtained by
Taylor series) here algebraic multiplicity of a in
f is n, for sufficiently small circle Cq4 around a
that doesnt have any other p-points then
v(f(Cq),a) =n.
i.e. f(Cq) loops around p exactly n times.
e now we define v(a) for a continuous func-
tion h as : if h(a) = p, I'q is the loop having
only a and no other p-points then topological
multiplicity v(a) = v(h(T'q), a).
e clearly as analytical maps are conformal we
have v(a) is always +ve (0. ) for analytic func-
tions
e v(a) =sign of det(J(a)) where J is Jacobian
e Topological Argument-Principle theorem:
for a continuous map h the total number of p-
points inside I'. (counted with their topological
multiplicities) is equal to the winding number
of h(T') round p..
e Darboux’s Theorem : If an analytic function
h maps I" onto h(TI") in one-to-one fashion, then

it also maps the interior of I' onto the interior
of h(I') in one-to-one fashion.
e Rouche’s Theorem : for f, g analytic in and
onT, If [g(z)| < [f(z)]on T, then (f+ g) must
have the same number of zeros inside I" as f.
e Brouwer’s Fixed Point Theorem : any con-
tinuous mapping of the disc to itself will have
a fixed point.
In general there must be a fixed point if the disc
is mapped into its interior and there are at most
a finite number of fixed points. (now if the map
is analytic then the number of fixed points in-
side the disk is only one).
e If f is analytic inside and on a simple loop
I' then no point outside f(I") can have a pre-
image inside I'.(i.e interior of I' maps to interior
of f(T').)
e Maximum Modulus Theorem : The max-
imum (minimum respectively if f(z) # o in-
side the closed boundary) of [f(z)| on a region
where f is analytic is always achieved by points
on the boundary, never ones inside.
e Schwarz’s Lemma : If an analytic mapping
of the disc to itself leaves the center fixed,then
either every interior point moves nearer to the
center, or else the transformation is a simple
rotation. (i.e. them map is contractive towards
the center).
e General Schwarz’s Lemma :
If f : A({|z| < 1}) — A is analytic and has a zero
of order n at origin then:

]

If(z) < |z|" Vz € A.

™ (0)] < !

m if Equality holds (any one) for any point in-
side A other than o then f(z) = az™,|a| = 1.
e modifying Schwarz’s lemma we get for f an-
alytic in A(a,R) , [f(z)] < M in A(q,R) and
f(a) = o then (applying Schwarz’s lemma for
g(z) = f(Rz4+a)/M ie. z — Rz + a for
|z| < 1)

]

M|z — a]
< -
f2)] <

10



for every z € A(a,R).

M

/
(@) < S

» and if equality holds for any two then f =
Me(z — a)/R for some |€| = 1.
e Schwarz-Pick Lemma : Unless an analytic
mapping of the unit disc to itself is a automor-
phism the hyperbolic separation of every pair
of interior points decreases.
ie.
if f is analytic on A, [f(z)| < 1Vz € A and
f(a) =b for some a,b € A, then

1— [f(a)l?
1—|af?

If'(a)] <
and for a,a’ € A

p(f(a), f(a’)) < p(a,a’).

where p(z,a) =|(z—a)/(az —1)|.

e Liouville’s Theorem :An analytic mapping
cannot compress the entire plane into a re-
gion lying inside a disc of finite radius without
crushing it all the way down to a point, i.e. a
bounded entire function is constant or bounded
harmonic function is constant (by Taylor series)
e Generalized Liouville’s Theorem : if f is an
entire function such that [f(z)| < M|z|* for all
sufficiently large |z| and @« > o, M > o then f
reduces to a polynomial of maximum degree n
closest integer to «.

e Generalized Argument-principle theorem
:Let f be analytic on a simple loop I' and ana-
lytic inside except for a finite number of poles.
If N and M are the number of interior p-points
and poles, both counted with their multiplici-
ties, then v(f(T"),p) = N — M.

e for any closed loop L §; 2dz = 2miv(L,0) in
general

§ ! dz = 2miv(L, p).
LZ—P

e now as Im(ab) = a x b it gives 2x the area
enclosed by triangle formed by sides a and b

vectors so we have for a simple loop L:
fi; zdz = 2i X area enclosed by L.
L

for general loop L

zdz =21 x ViA;.
fraesx 3 o

inside
where Aj is the area enclosed by points which
have v; = v(L,p) = a # o constant (i.e form a
part of loop).
e Cauchy’s Theorem :If an analytic mapping
has no singularities “inside” a loop, its integral
round the loop vanishes (i.e. = 0).
e from above we get in integral of analytic
functions are path independent.
® Morera’s Theorem : If all the loop integrals
of f are known to vanish in a region then f is
analytic in that region.
e if m ¥ —1 then

B

JZde _ 1 (Bm—|—1 _ Am+1)
m+1

A

e clearly from above we have
ff;zmdz =0ifm +—1.

e Deformation Theorem : If a contour sweeps
only through analytic points as it is deformed,
the value of the integral does not change.

e Cauchy’s formula : if f(z) is analytic inside
a simple loop L then

!
a)- o4
27

e General Cauchy’s theorem : if L is not sim-
ple then

f(z)
7(2 ) dz.

n! f(z)

n —_—_- - - -
v(L,a)f*(a) pr i Z_an dz.
e Taylor Series : If f(z) is analytic, and a is
neither a singularity nor a branch point, then
f(z) may be expressed as the following power

11



series, which converges to f(z) within the disc
whose radius is the distance from a to the near-
est singularity or branch point:

f(z) = ) cn(z— a)™. where
n=o
_fM(a) 1 f(z)
T T zniﬁ (z—a)ntt dz.

e Laurent Series : if f is analytic inside an an-
nulus centered at a then f an be expressed as
the following series (for any simple loop K in-
side the annulus)

f(z) = i an(z — a)™. where

f(z) dz

1
an=—¢ ————dz.
" 27ti£_ (z—a)n+1

e General Residue Theorem : from Laurent
series and integral of z™ we have if f is ana-
lytic then for a loop L containing only isolated
singularities {ay } of f, we have:

# f(z)dz = sz v[L, ax]Res(f, ax).
L k

where Res(f, a;) = a_, or coefficient of 1/(z —
a;i) when f is written as Laurent series centered
at aj containing no other singularity.

e if a is a pole of f of order m.

(i.e. lim;_, 4 (z — a)™f(z) = ¢ defined) then
Res(f(z),a)

m—1
~ lim @

z—a (m—1)!dzm—* (z—a)™(2).

e if P/Q has a simple pole (order 1) at a then

P _ P(a)
Res ((21:9) = (e

e Gauss mean value theorem : for a harmonic
function ¢ (3% ¢ + 9% ¢ = 0) the mean value of
¢ on a circle is equat to the vale of function at

center of the circle i.e.
if f(z) is analytic then

27T
x J fla+ret®)de = f(a)
27

1]

e Residue at infinity : for analytic f we have

f(1/z) 0>
zz )7

Res(f(z),00) = —Res (
= A §o_ f(z)dz=—a_,, where C™ is a circle
oriented —vely covering all singularities (+ co)
of f(z).

e Extended Residue theorem: for analytic f we
have

ZZ

Res <f(1/z)’0> = Z Res(f, ay)
k

where ay # oo also if simple loop y includes all
finite singularities of f(z) then

f(1/2) 0)
zz )7

% f(z)dz = 2mtiRes <
v

e Argument-Principle theorem (integral
form) : if f(z) is a meromorphic function in
domain D C C, has finitely many zeroes and
poles in D, C is any simple loop in D such that
no pole or zero lie ‘on” C then

(2 .
i 2) dz =2mi(N —P).
where N and P denote the number of zeroes
and poles of f inside C (counted with their mul-
tiplicities and order).

e General Rouche’s Theorem : for f,g ana-
lytic in and on C with finite number of poles
and zeroes inside the Domain covering C, If
Ig(z)| <|f(z)] on C, then

Nf+g - Pf—l—g = Nf - Pf

where Ny, Pi, denote the number of zeroes and
poles of h inside C (counted with their multi-
plicities and order).

12



e Alternative form of Rouche’s Theorem :
if same conditions as above hold for g —
f(z),f(z) and |g(z) — f(z)| < [f(z)| then

(can used for calculating the number of zeroes
of polynomial in a give loop)

e Application of Rouche’s Theorem to polyno-
mials

m eg: consider the polynomial g(z) = z% —
524 +7

* now |g(z) — 7] < [z[° +5zl* < 7if 2] < 1(
as 1+5 < 7) thus g(z) has same number of ze-
roes as f(z)7 in |z| < 1 i.e. g(z) has no zeroes
inside |z| < 1.

* similarly if f(z) = —5z% we have |g(z) —
£(2)] < |26 +7 < s5lzl4 if |2] < 2 (as25+7-71 <
5.24 = 80) thus g(z) has 4 zeroes in |z| < 2.

* similarly if f(z) = z® we have |g(z) —
f(z)] < s5lzb+7 < [z if |z] < 3 (as5.3¢+7=
412 < 3% = 729 ) thus all zeroes of g(z) lie inside
2] < 3.

8 Mics Properties

e A real valued function of a complex variable
f : C — C has derivative zero or non existent
i.e if f is analytic the is a constant.

e for an analytic function in domain D if one
of : [f|,Re(f), Im(f),Arg(f) is constant in D
then f is constant.

e Harmonic functions:

m ¢(x,y) a real valued function is harmonic
iff V¢ =o.

m real and imaginary parts of analytical func-
tion’s are harmonic (in the defined "Domain"(a
connected open set) ) (converse is not true).

m f(z) is analytic in Domain D iff real and
imaginary parts of both f(z) and zf(z) are har-
monic.

m if @ is a harmonic function in a Domain then
f = px — idy is analytic in the domain.

m Harmonic conjugate of harmonic function
¢ is another harmonic function 1 such that

f= & + 1 (i.e P is the imaginary part od an-
lytic function whose real part is ¢).

m if ¢ is harmonic in a simply connected re-
gion then it has a harmonic conjugate in this
region.

e if f is analytic in a simply connected region
Q and f(z) # o in Q then Jh analytic in Q
such that

eM(®) = £(2).

(h'(z) = f'(2)/f(z) claim f.e "% = ¢ = ek
prove by differentiating) (domain can be whole
Q).

e if f satisfies the above conditions then 3g an-
alytic in Q such that g*>(z) = f(z) in Q (choose
g(z) = en(=)/2).

e Cauchy’s Inequality : if f is analytic in
an open disk centered at a of radius R =

A(a,R) = |z—a|]<R and [f(z)] < M on
boundary A(a, ) for o< r < R then we have
k!
@) < M

— rk .

(use estimation of Cauchy integral).

e for an open set D if f, : D +— C are ana-
lytic for each n and if f;, — f uniformly on
each compact subset of D then f is analytic and
more over fK — f* uniformly in the compact
subsets, the same is true for series also if all
conditions hold.

e every zero of an analytical function is iso-
lated.

e from above we have if a, are the zeros of
analytical map f, an — a € C then f = o.

e in general if if qn are p-points of analyti-
cal map f, qn — q € C then f = p (use
h(gqn) =f(dn) —p=0.)

e also if f, g analytic in Domain D , f — g has
set S of zeroes that has a limit point then f = ¢
in D (in general if f — g has set Q of p-points
that has a limit point then f(z) = g(z) + p.)

e four distinct points in C, all lie on a circle or
line iff their cross ratio is real.

e a singularity at z, of f(z) is removable if f
can be defined at z, so that it is analytic at z,.
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e Riemann’s Removable Singularity theorem:
if f has an isolated singularity at z, then z, is
removable iff one of the below holds.

m f is bounded in deleted neighborhood of z,.

m lim f(z). exists
ZZo

n Zl'i_>rrz1 (z—2z0)f(2) =o.
e Picard’s Little Theorem : every non constant
entire function only omits at most one value,
from this we get if a entire function omits two
value then it is a constant.
e Picard’s Great theorem : if z, is the essen-
tial singularity of f(z) analytic in A(z,,T) — 2,
then C — f(A(zo, 1) — 2,) is a singleton set.
e Picards little theorem for meromorphic
functions: A meromorphic function omits
three distinct values then it is a constant.
e if f is an even anlytic function (ie. f(-
z)=f(z)) then for z, isolated singularity of f
Res(f(z),z,) = o. (there are no odd power
terms in Laurent series expansion).
e if analytic function f is such that f(z) =
f(z+z,) = f(z+ z,) (doubly periodic)and if
z,/2, ¢ R then f is a constant (as z,,z, will be
linearly independent).
e if p(z) is a polynomial of degree n > 1 then
every zero of p’(z) : (z)lies in the complex
hull of zeroes of p(z) : (zx) i.e z{ = Y r_, AkZk,
for Y p_ Ax=1.
e if f is analytic in [z| < M iff f(z) is also an-
alytic in |z| < M (as amplitwistness of f(z)
doesnt change).
o if p(z) = ay+ a2+ a2z 4+ --- +
an—,2" '+ z", simple loop C covers all ze-
roes of p(z) then

% zf'(z2)
c f(2)
§ 221’ (z)
c f(z)

® z,,2, and z; are vertices of equilateral trian-
gle iff

= —ZT[ian_I.

=2mi(a?_, —20an_,).

ie.
22+ 22+ z§ =242, + 2,25 + 2324,
® 2,2, and z; iff
zy=t(z,) + (1 —t)z, fort € R

(i.e equation of line in 2D.)
e if analytic function f(z) is real on real line
and purely imaginary on imaginary axis then
f(—z) = —f(z) i.e. fis odd.
e for f(z) analytic in Domain D then:

m if f is even i.e. f(z) = f(—z) then 3 g(z)
analytic in D such that f(z) = g(z?).

m if fis odd i.e. —f(z) = f(—z) then 3 g(z)
analytic in D such that f(z) = zg(z?).

m Every meromorphic function in C can be
represented as quotient of two entire functions.

m Open mapping Theorem : if f(z) is a non
constant analytic function in Domain D then it
is open mapping i.e. f(O) is open for every
open set O € C.
e Clearly if f is analytic in D a Domain (open
connected set) then (D) is also a Domain.
e Hurwitz’s Theorem : if {f,,} are non vanish-
ing (# o) in a Domain D and converges uni-
formly to f on every compact subset of D then
either f has no zeroes or f = o.
e Local mapping theorem : if f is analytic at a
the there exist a neighborhood of a where f is
one-one iff f/(a) 0. or
if f is univalent and analytic in a Domain D
then f/(z) o0 in D.
e if f is meromorphic at pole a and is one-one
in neighborhood of a iff a is a simple pole.
e from above if f is meromorphic and univa-
lent in D then f has only simple poles in D.
e for f analytic at oo is univalent at oco(in its
nbd) iff Res(f, c0) #o.
e Riemann mapping theorem : every simply
connected domain which is a proper subset of
C is Conformally equivalent to a unit disk i.e.
if Q is a simply Connected open set then there
exist a function f analytic in € such that f() =
A.
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