Complex Analysis

Yashas.N

1

1

1 2

2 3 3

4

5

6

8

9

Contents

1	Power Series	1
2	Transformations	1
2.1	Z^n	1
2.2	e^{z}	1
2.3	Trigonometric functions	2
2.4	$\log(z)$	2
2.5	Geometric transforms	3
2.6	$\frac{1}{z}$	3
2.7	Mobius Transforms	4
2.8	More on Mobius Transforms	5
3	Automorphisms, Conformality and map of unit disks	5
4	Stereographic projection	6
5	Analyticity	7
6	Analytic continuation	8
7	Complex Integration	9
8	Mics Properties	12
1	Power Series	

•
$$P(z) = a_0 + a_1 z + a_2 z^2 + a_3 z^3 \cdots$$

• If $P(z)$ converges at $z = a$ then it converges

ges absolutely for all |z| < |a|.

solutely for all |z| > |d|.

• If two power series $A(z) = \sum_{n=0}^{\infty} a_n z^n$ and $B(z) = \sum_{n=0}^{\infty} b_n z^n$ agree on an infinite sequence $(\neq \mathbf{0})$ converging to zero then they are same i.e. $a_i = b_i \forall i.$ • In general for $P_b(z) = \sum_{n=0}^{\infty} a_n (z-b)^n$ above holds as in displacement or translation of b to o i.e. $P_b(z) = P(w)$ for w = z - b. • if radius of convergence of $P(z) = \sum_{n=0}^{\infty} a_n z^n$ is **R** then: • $\mathbf{R} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$.

•
$$\mathbf{R} = \lim_{n \to \infty} \left| \frac{\mathbf{I}}{|a_n|^{1/n}} \right|.$$

• $\mathbf{R} = \lim_{n \to \infty} \left| \frac{\mathbf{I}}{\limsup |a_n|^{1/n}} \right|.$

• Radius of convergence of the power series of f(z) at k is equal to distance between k and closest singularity of f(z) to k.

Transformations 2

• $w = z^n = r^n e^{in\theta}$

• If P(z) diverges at z = d then it diverges ab- | • so from above each z is magnified $|z|^n$ times and rotated **n** arg(z) times in the plane i.e.

• Images of circles are circle (with expanded or contracted radius), lines are lines

• Most geometric shapes just expand/diminished $\cos(z - \pi/2) = \sin(z)$. (amplified) and gets rotated (twist) • $\cosh(z) = \cos(iz)$.

2.2 e^{z} .

• $w = e^z = e^x e^{iy} = e^x \cos y + i e^x \sin y =$ u + iv.

• $e^z = \mathbf{1} + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots$ and radius of convergence $=\infty$.

• *e^z* takes all values in C infinitely many times except zero i.e. range(e^z)= $\mathbb{C} - \{\mathbf{o}\}$.

• if x is constant then $u^2 + v^2 = e^x = r$ \implies horizontal lines are mapped to circle.

• if y is constant then $\frac{v}{u} = \tan y$ or v = cu \implies vertical lines are mapped to lines passing through origin (not including the origin).

• every other line is mapped to a spiral centred at origin (not including).

Trigonometric functions 2.3

$$\cos(z) = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} \dots$$
$$= \frac{e^{iz} + e^{-iz}}{2}$$
$$\sin(z) = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} \dots$$
$$= \frac{e^{iz} - e^{-iz}}{2i}$$

- $\sinh(z) = -i \sin(iz)$.
- so exploring only one of trigonometric functions namely **cos** *z* is sufficient
- now $\cos(x + iy) = \frac{e^{ix}e^{-y} + e^{-ix}e^{y}}{2}$ = $\frac{e^{y} + e^{-y}}{2}\cos(x) i\frac{e^{y} e^{-y}}{2}\sin(x)$ = $\cosh y \cos x i \sinh y \sin x = u + iv.$
- for z = x + iy and $w = \cos(z) = u + iv$ if $y = y_0$ is kept constant then $\frac{u^2}{\cosh^2 y_0} + \frac{v^2}{\sinh^2 y_0} = 1.$

• so every horizontal line is transformed to an ellipse with foci's ± 1 .

(as $a = \sinh y_0 b = \cosh y_0 \implies c = b^2 - a^2 =$ **1** (unit from origin) so foci's = $(\mathbf{1}, \mathbf{0}), (-\mathbf{1}, \mathbf{0}).$

• similarly $x = x_0$. is kept constant then

$$\frac{u^2}{\cos^2 x_0} - \frac{v^2}{\sin^2 x_0} = 1.$$

 $\sin^2 x_0$ so every vertical line is transformed to hyper-

bola with foci's ± 1 .

2.4 $\log(z)$.

- it denotes the inverse function of exponential
- $\log(re^{i\theta}) = \ln(r) + i\theta$.

• Clearly log is a multifunction as $log(re^{i\theta}) = ln(r) + i(\theta + 2n\pi)$.

• properties of multifunctions:

 a region in range where multifunction takes ordinary single value is called a branch.

• typically branches are connected regions (simply or multiply)

• **q** is branch point of multifunction if after a revolution around the point in domain the multifunction changes its values on the original observed point

• **q** is algebraic branch point of f(z) if f(z) returns to original observed value after **N** revolutions around **q**, its order is **N** - **1**, a simple branch point has order **1**.

• **q** is logarithmic branch point if order is ∞ i.e. the original value is not restored by any number of revolution around the point.

• any curve drawn from branch point to ∞ is called a branch cut, typically is -ve real axis.

• eg: $z^{\frac{m}{n}}$ is one—n mutifunction has branch point **o** of order n - 1, z^{τ} for τ irrational has logarithmic branch point of **o**.,

• a function can have more than one branch point eg: $\sqrt{z^2 + 1} = \sqrt{(z - i)(z + i)}$ has $\pm i$ as simple branch points.

• if a complex function or a branch of multifunction can be expressed as power series then the **radius of convergence** is distance to the nearest singularity or branch point.

• log(z) has logarithmic branch point at **o**.

• $\text{Log}(z) = \ln |z| + i\text{Arg}(z)$ where the branch cut is -ve real axis and $-\pi < \text{Arg}(z) \le \pi$ is called principle branch.

• continuity of Log(z) breaks down at $Arg(z) = \pi$.

• $\text{Log}(\mathbf{1} + z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \dots$ is a power series centered at **1** with radius of convergence **1** converges on this unit circle except for $z = -\mathbf{1}$.

• other branches of log(z) can be explored by writing $log(z) = Log(z) + 2n\pi i$.

• $z^k = e^{k \log(z)} = e^{2n\pi k i} e^{k \log(z)} = e^{2n\pi k i} [z^b]$ where $[z^k]$ denotes root in principle branch. thus

• $z^{p/q} = e^{p/q 2n\pi i} [z^{p/q}].$

Now for complex powers

$$[z^{a+ib}] = e^{(a+ib)(\log(z))}$$
$$= e^{(a+ib)(\ln(r)+i\theta)}$$
$$= e^{a \ln(r)} e^{-b\theta} e^{i(a\theta+b \ln(r))}$$

so
$$[z^{a+ib}] = |z|^a e^{-b \operatorname{Arg}(z)} e^{i(a \operatorname{Arg}(z)+b \ln|z|)}$$

and $z^{a+ib} = e^{i2\pi na} e^{-2\pi nb} [z^{a+ib}]$

2.5 Geometric transforms

• translation by v : $J_v(z) = z + v$ translates $o \rightarrow v$.

- rotation about origin by θ : $\mathbf{R}_{\mathbf{o}}^{\theta}(z) = e^{i\theta}z$.
- rotation about w by θ .:

$$\mathbf{R}_{\boldsymbol{w}}^{\boldsymbol{\theta}} = \mathbf{J}_{\boldsymbol{w}} \circ \mathbf{R}_{\mathbf{o}}^{\boldsymbol{\theta}} \circ \mathbf{J}_{-\boldsymbol{w}}(\boldsymbol{z}).$$

- Properties:
- $\{J_w\}$ forms a group under composition
- $\mathbf{R}_{w}^{\theta} = \mathbf{J}_{v} \circ \mathbf{R}_{o}^{\theta}$ where $v = w(\mathbf{1} e^{\theta})$

. i.e. rotation about any point is equal to a rotation around origin proceeded by translation.

• if $\theta + \phi = 2n\pi$ then $R_a^{\theta} \circ R_b^{\phi} = J_v$ where $v = (b - a)(\mathbf{1} - e^{\mathbf{i}\phi})$.

- Reflection about a line $L_1 = \Re_{L_1}$.
- Reflection about real axis $\Re_{u=0} = \overline{z}$.
- Reflection about line ax + by = c is

$$\Re_{ax+by=c} = \frac{(b-ia)\overline{z}+2ic}{b+ia}$$

(can be done by transforming line to real axis by translation and rotation then conjugation and followed by inverse back to same line transformation).

• Properties:

• If L₁ and L₂ intersect at O, and the angle from L₁ to L₂ is ϕ ., then $\Re_{L_2} \circ \Re_{L_1}$ is a rotation of 2ϕ about O i.e. $R_O^{2\phi}$.

• If L₁ and L₂ are parallel, and v is the perpendicular vector to both lines, connecting L₁ to L₂ (i.e. distance vector), then $\Re_{L_2} \circ \Re_{L_1}$ is a translation of 2v i.e. J_{2v} .

2.6 $\frac{1}{7}$.

• before studying $\frac{1}{z}$ we can study inversion about a circle :

• $\mathfrak{J}_{c}(z)$ is the inversion of points in circle c centered at q with radius **R** i.e. it transforms interior of circle to exterior and points on circle remain fixed

• some defining properties of \mathfrak{J}_c (inversion of about circle c of radius R and centred at q.) :

• $q \to \infty$.

• if z is at distance ρ from q then it is moved to distance \mathbb{R}^2/ρ along same direction as z from q i.e.

(as $\overline{(z-q)}(\mathfrak{J}_{c}(z)-q) = \mathbb{R}^{2}$.)

• Properties of inversion (\mathfrak{J}_{c} centred q radius R.):

• inversion is involutory i.e. $\mathfrak{J}_{c} \circ \mathfrak{J}_{c}(z) = z$ or $\mathfrak{J}_{c}^{2} = I$.

• if $\tilde{a} = \mathfrak{J}_{c}(a)$ and $\tilde{b} = \mathfrak{J}_{c}(b)$ then $\triangle \tilde{a}q\tilde{b}$ is similar to $\triangle aqb$.

• every line that does not pass through **q** is mapped to a circle passing through **q**.

• as inversion is involutory it swaps the above point i.e. a circle passing through **q** is mapped to a line not passing through **q**.

• A circle not passing through **q** is mapped to another circle not passing through **q** i.e. **inversion preserves circles**.

• if a circle k cuts circle c at a and b at right angles i.e. k is orthogonal to c then k is mapped to itself i.e. inversion maps orthogonal circles to c to itself. Inversion in a circle is anticonformal map

• If a and b are symmetric with respect to circle k then their inversion images \tilde{a} and \tilde{b} are also symmetric with respect to the inversion image circle \tilde{k} of k.

• i.e. Inversion maps any pair of orthogonal circles to another pair of orthogonal circles.

• also if a and b are symmetric w.r.t line L_1 (i.e. are reflections) then their inversion images are also symmetric to the inversion line $\tilde{L_1}$.

• now $\frac{1}{z} = (\frac{1}{\overline{z}})$ so $\frac{1}{z}$ is reflection of inversion centered at origin with unit radius on real axis, so all properties of inversion holds as reflection preserves shapes.

• now as both inversion and conjugation are anticonformal implies 1/z is a conformal map • define inverse point w.r.t. circle $C_{(z_0,R)} = \{z | |z - z_0| = R\}$ as a and a* are inverse points w.r.t $C_{(z_0,R)}$ if $a \mapsto a^*$ under $\mathfrak{J}_{C_{(z_0,R)}}(z)$ i.e. if $a^* = z_0 + \frac{R^2}{a - z_0}$ or $(a^* - z_0)\overline{(a - z_0)} = R^2$.

2.7 Mobius Transforms

$$M(z) = \frac{az+b}{cz+d}$$
$$= \frac{a}{c} - \frac{ad-bc}{c^2} \left(\frac{1}{z+\frac{d}{c}}\right)$$
$$= J_{a/c} \circ Az \circ \overline{\mathfrak{J}_u} \circ J_{d/c}(z)$$

where $\mathbf{A} = \frac{ad - bc}{-c^2}$, $\mathbf{u} \equiv \{|z| = 1\}$.

• The only shape changing transformation in M(z) is conjugate inversion, so all symmetries and properties of inversion follow to mobius transform.

• Properties

• every mobius transform maps circles and straight lines onto circles and straight lines.

• above point may not be same order i.e. some circles can be mapped to straight lines and visa-viz. namely a straight line or a circle maps onto a straight line if it passes through the point z = -d/c, and onto a circle if it does not i.e. lines and circles not passing trough -d/c are mapped to circle. mobius transform is conformal

■ more over mobius transforms are the only transforms that **map circles to circles**

• To be specific A Mobius transformation maps an oriented circle **C** to an oriented circle \tilde{C} in such a way that the region to the left of **C** is mapped to the region to the left of \tilde{C} .

• Symmetric principle: If two points are symmetric with respect to a circle i.e. inverse points w.r.t a circle, then their images under a Mobius transformation are symmetric with respect to the image circle. transformation are symmetric with respect to the image circle.

• every mobius transform has only 2 fixed points

• there exist a unique mobius transform sending any three points to any three points.

the coefficients of a mobius transform {a, b, c, d} are not unique as any k ≠ o. {ka, kb, kc, kd} gives same mobius transform
define cross ratio as [z, a, b, c] = ((z-a)(b-c))/((z-c)(b-a)).

• **p**, **q**, **r**, **s** are mapped to **p**, **q**, **r**, **s** by a Mobius Transformation iff

$$[\mathbf{p},\mathbf{q},\mathbf{r},\mathbf{s}] = [\tilde{\mathbf{p}},\tilde{\mathbf{q}},\tilde{\mathbf{r}},\tilde{\mathbf{s}}].$$

i.e. Mobius transforms are cross-ratio invariant. • Unique Mobius transform M(z) = w that transforms $a \rightarrow r, b \rightarrow s, c \rightarrow t$ is

$$[w, r, s, t] = [z, a, b, c]$$

or

$$\frac{(z-a)(b-c)}{(z-c)(b-a)} = \frac{(w-r)(s-t)}{(w-t)(s-r)}.$$

2.8 More on Mobius Transforms

• now as coefficients of mobius transform are not unique if ad - bc = 1 in M(z) then we can associate a matrix for each of these mobius transforms from which resembling matrix properties can be associated to properties of transform i.e.

$$\mathbf{M}(z) = \frac{az+b}{cz+d} \longleftrightarrow [\mathbf{M}] = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

• Properties:

• $M_3 = M_1 \circ M_2(z)$ them $[M_3] = [M_2][M_1]$.

• if inverse of M(z) is $M^{-1}(z)$ then $[M^{-1}] = [M]^{-1}$.

■ identity transform [I] = [1,0;0,1].

• Thus M(z) of form a group (for $ad - bc \neq$

0, = **1**) as $SL(\mathbb{R}, 2)$ is a subgroup of $GL(\mathbb{R}, 2)$.

• Homogeneous coordinates $z = \frac{v_1}{v_2}$ for $v_i \in \mathbb{C}$.

• [M] is a liner transform on homogeneous coordinates of z that transforms homogeneous coordinates of z to homogeneous coordinates of M(z) i.e if $z = v_1/v_2$, $M(z) = w = \rho_1/\rho_2$. then

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \end{bmatrix} = \begin{bmatrix} \rho_1 \\ \rho_2 \end{bmatrix}.$$

(although homogeneous coordinates may not be unique but their ratios ought to be)

★ Properties:

• $z = (v_1/v_2)$ is a fixed point of M(z) iff $[v_1 \ v_2]^T$ is an eigenvector of [M].

3 Automorphisms, Conformality and map of unit disks

• any disk or half plain can be mapped to itself using mobius transform i.e. under specified mobius transforms say M_1 we can have $M_1(D) = D$ for a disk $D = \{z | |z - a| \le r\}$ and for $M_2(\mathbb{H}) = \mathbb{H}$ for any half plane $\{z = x + iy | ax + by \ge c\}$ (note : this is mere a bijection with restrictions, not the identity map in disk or half plane).

• more over the only conformal bijections (automorphisms) of disks \mapsto disks, half planes \mapsto half planes are **Mobius Transforms only**.

• Let **C** be a unit circle in **C** and **D** be the unit disk it covers then :

• mobius transform's are the only automorphisms conformal on this unit disk

 this mobius automorphism's on unit disk has 3 degree of freedom (only 3 real numbers specify it)

• Now if two Mobius automorphisms on unit disk are say M and N map two interior points

to same image points i.e. the agree on two interior points then M=N (as this takes 4 degree of freedom from both transforms)

• if **D** is centered at origin then these 3 degrees of freedom are a point in **D** ($\mathbf{a} = (x + iy)$, $x, y \rightarrow 2$ degrees) that maps to origin and a point $e^{i\theta}$ on the disk **C** ($\theta \rightarrow 1$ degree) that **1** is mapped to (i.e. $\mathbf{a} = x + iy \mapsto 0$, $\mathbf{1} \mapsto e^{i\theta}$).

• as **a** is mapped to o, and mobius transform preserves symmetry between points and their images (inversion) we have the point $1/\overline{a}$ is mapped to ∞ (as **C** maps to itself, $a, 1/\overline{a}$ are symmetric w.r.t **C** their images should be o, ∞). • so now $a \mapsto o \implies M(z) = \frac{k(z-a)}{d},$ $1/\overline{a} \mapsto \infty \implies M(z) = k\frac{z-a}{\overline{a}z-1}$ and as $M(z) \in C$

 $\mathbf{1}/\overline{\mathbf{a}} \mapsto \infty \implies \mathbf{M}(z) = \mathbf{k}\frac{z-\mathbf{a}}{\overline{\mathbf{a}}z-\mathbf{1}}$ and as $\mathbf{M}(\mathbf{1}) \in \mathbf{C} \implies |\mathbf{M}(\mathbf{1})| = \mathbf{1} \implies \mathbf{k} = e^{\mathbf{i}\phi}$ so the automorphism of unit disk $(|z| \le \mathbf{1})$ i.e. mobius transform is determined only by $\mathbf{a} = \mathbf{x} + \mathbf{i}\mathbf{y} \mapsto \mathbf{0} (|\mathbf{a}| < \mathbf{1})$ and $\mathbf{p} \mapsto \mathbf{1} (|\mathbf{p}| = \mathbf{1})$ this is given by :

$$\mathcal{M}^{\Phi}_{\mathfrak{a}}(z) = e^{i\Phi} \frac{z-\mathfrak{a}}{\overline{\mathfrak{a}}z-\mathfrak{1}}.$$

• now for

$$\mathbf{M}(\mathbf{w}) = \frac{\mathbf{p}\mathbf{z} + \mathbf{q}}{\overline{\mathbf{q}}\mathbf{z} + \overline{\mathbf{p}}}$$

for $|\mathbf{p}| > |\mathbf{q}|$ then M(w) is an automorphism of unit disk (transform this to M_{α}^{Φ} for $\alpha = q/p$ and $e^{i\Phi} = p/\overline{p}$.)

• clearly $M_a^{\phi}(z) = e^{i\phi}M_a^{o}(z)$ so is just rotation of $M_a^{o} = M_a(z)$.

• properties of M_a :

• M_{α} is the only Mobius automorphism that swaps **a** and **o** (i.e. $M_{\alpha}(\alpha) = \mathbf{o}, M_{\alpha}(\mathbf{o}) = \alpha$.)

• now as an inversion about circle **c** maps circles orthogonal **c** to themselves (automorphism) thus automorphisms of unit circle can be viewed as inversions about circles orthogonal to unit circle to uncover this we break down that as $\mathbf{a} \mapsto \mathbf{o}$ and inversion circle is orthogonal to unit circle the center of inversion is on the line between **a** to **o** and as inversion is symmetric $\mathbf{1}/\overline{\mathbf{a}} \mapsto \infty$ we conclude that center of inversion is $\mathbf{1}/\overline{\mathbf{a}}$.

• as M_a is conformal the above inversion should be coupled with reflection (on line perhaps) to give the exact map, as this reflection leaves **a**, **o** fixed we conclude this is reflection about line **a** to **o** ($L_{a.o.}$)

• thus $M_{\mathfrak{a}} = \mathfrak{R}_{L_{\mathfrak{a},\mathfrak{o}}} \circ \mathfrak{J}_{\mathfrak{f}}$.

• thus fixed points $(\pm \xi)$ of M_a is the intersection of $L_{a,o}$ and j.

■ M_a is Involutory.

• if \mathbb{H}^{\pm} represents the upper or lower half plane (Im(z) > 0 or < 0), $\delta = \Delta(0, 1)$ unit disk at origin and $\partial \Delta = \{|z| = 1\}$ then :

• for fixed $\beta \in \mathbb{C}$, $\theta \in \mathbb{R}$ if $\operatorname{Im}(\beta) > o$ then

$$w = f(z) = e^{i\theta} \frac{z-\beta}{z-\overline{\beta}}.$$

are the only conformal maps that maps

 $\mathbb{H}^+ \mapsto \delta , \beta \mapsto \mathbf{0} \text{ and real line} + \infty = \mathbb{R}_{\infty} \mapsto \\ \frac{\partial \Delta}{\partial \mathbf{1}} \text{ (to see assume } |w| < \mathbf{1} \iff |z - \overline{\beta}|^2 - |z - \beta|^2 > \mathbf{0} \iff -2 \operatorname{Re}(z(\beta - \overline{\beta})) = \\ 4(\operatorname{Im}(z))(\operatorname{Im}(\beta)) > \mathbf{0}.)$

• now if we use transform $\mathbf{R}_{o}^{\pi}(z) = e^{i\pi}z = -z$ which rotates \mathbb{H}^+ to \mathbb{H}^- we get $g = f \circ \mathbf{R}_{o}^{\pi}(z)$.

$$g(z) = e^{i\theta} \frac{z-b}{z-\overline{b}}.$$

for Im(b) < o, are the only conformal maps that map $\mathbb{H}^- \mapsto \delta$, $b \mapsto o$ and $\mathbb{R}_{\infty} \mapsto \partial \Delta$.

• similarly if $h(z) = f \circ R_0^{\pi/2}$

$$h(z) = e^{i\theta} \frac{z-\gamma}{z+\overline{\gamma}}.$$

for $\operatorname{Re}(\mathfrak{b}) > \mathfrak{0}$, are the only conformally maps that map Right half plane $(\operatorname{Re}(z) > \mathfrak{0}) \mapsto \delta$, $\gamma \mapsto \mathfrak{0}$.

• a Mobius transform w = az + b/cz + dmaps $\mathbb{H}^+ \mapsto \mathbb{H}^+$ iff $a, b, c, d \in \mathbb{R}, ad - bc > o$ (i.e. automorphisms of \mathbb{H}^+ .)

• similar to above point a Mobius transform w = az + b/cz + d maps $\mathbb{H}^- \mapsto \mathbb{H}^-$ iff $a, b, c, d \in \mathbb{R}, ad - bc < o$ (i.e. automorphisms of \mathbb{H}^- .)

4 Stereographic projection

• To visually represent the whole complex plane and the point ∞ Riemann project the whole complex plane to a sphere : Riemann sphere (Σ) centered at origin a unit radius in 3 dimensions where the xy plane is C.

• The point N = (0, 0, 1) (north pole) maps to ∞ (in a pseudo sense) and every other point (*z*) is mapped to (\hat{z})the point of intersection of the Riemann sphere and the line through N and the point.

• Properties:

• Unit circle $\mathbf{C} = |\mathbf{z}| = \mathbf{1}$ remains fixed

• interior of **C** is mapped to Southern hemisphere particularly $\mathbf{o} \mapsto (\mathbf{o}, \mathbf{o}, -\mathbf{1}) = \mathbf{S}$.(south pole)

• exterior of **C** is mapped to Northern hemisphere

• A line in \mathbb{C} is mapped to circle passing through **N** particularly the tangent of this circle at **N** is parallel to the line (in 3 dimensions)

I It is **conformal map** in accordance to an observer **from inside of Σ**.

• Stereographic projection is can be broken down as inversion in the plane through $\{N, z \mapsto \hat{z}\}$: if K is a circle centered at N of radius $\sqrt{2}$ in the plane where line through N and z passes then \hat{z} is the image $\mathfrak{J}_{K}(z)$ in this plane (this plane is considered as C for $\mathfrak{J}_{K}(z)$.)

• From above it is clear that Circles are mapped to circles in particular origin centered

circles are mapped to horizontal circles (i.e circles in planes parallel to **xy**. plane)

• Properties related to functions:

• Complex conjugation in C. induces a reflection of the Riemann sphere in the vertical plane passing through the real axis.

• Inversion of \mathbb{C} in the unit circle induces a reflection of the Riemann sphere in its equatorial plane (i.e. Northern hemisphere \longleftrightarrow Southern Hemisphere).

• The mapping $z \to (1/z)$ in \mathbb{C} induces a rotation of the Riemann sphere about the real axis through an angle of π .

• properties functions like conformality at ∞ can be checked through Stereographic projection.

formulas of Projection

• if
$$z \mapsto (X, Y, Z)$$
 then:

•
$$Z = \frac{|z|^2 - 1}{|z|^2 + 1}$$
, $X + iY = \frac{2z}{1 + |z|^2} = \frac{2x + i2y}{1 + x^2 + y^2}$.

• if $z \mapsto (\theta, \phi)$ for θ angle subtended around z axis in xy plane and ϕ angle subtended at center by **N** and \hat{z} then:

• $z = \cot(\phi/2)e^{i\theta}$ or $\theta = \operatorname{Arg}(z), \quad \phi = 2\cot^{-1}(|z|).$

5 Analyticity

• if $z(x + iy) \mapsto f(z) = w(u + iv)$ then $df = du + idv \ du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy$ and $dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$ i.e.

$$\begin{bmatrix} d\mathbf{u} \\ d\mathbf{v} \end{bmatrix} = \begin{bmatrix} \partial_x \mathbf{u} & \partial_y \mathbf{u} \\ \partial_x \mathbf{v} & \partial_y \mathbf{v} \end{bmatrix} \begin{bmatrix} dx \\ dy \end{bmatrix}.$$

• where the linear transform is the Jacobian matrix of f.

• now in C if df(w) = f'(z)dz to be true f'(z)should not depend on dz i.e. each infinitesimal vector dz at z should transform to dw at w = f(z) by the same factor f'(z) no matter the direction of dz..

• this condition tells us that **d***w* is just the amplification and rotation or twist or together **am**-

plitwist of dz (as $f'(z) \in \mathbb{C} \implies dw = f'(z)dz = r'e^{i\theta'}dz$.)

• now if f is diffrentiable at z then f'(z) exist so the infinitesimal map at point z is an amplitwist.

• clearly amplitwist is conformal (as amplification and twist is)

• now for the converse if a map is conformal at z then it is not presupposed to be amplitwist at z as the amplification may vary but if we presuppose that the map is locally conformal at z (i.e in some whole neighborhood) then clearly the map is locally amplitwist at z (as infinitesimal \triangle is mapped to similar infinitesimal \triangle).

• By above we define **Analytic functions** : functions in \mathbb{C} whose effect are locally (infinitesimal) an amplitwist or a function is analytic at z if it is diffrentiable at z and in a neighborhood of z. (as diffrentiable in neighborhood makes it locally conformal).

• Thus we have an **Analytic function is Con**formal.

• Geometric properties of Analytic function:

• infinitesimal circles are mapped to infinitesimal circles

• A mapping between spheres represents an analytic function iff it is conformal.

• Conformality of analytic functions breakdown near critical points (f'(z) = 0.) and branch points.

• Geometric property of general transform on \mathbb{C} : as jacobian is a linear transform by singular value decomposition of $\mathbf{2} \times \mathbf{2}$ matrices we have the local linear transform by a complex mapping is a stretch in direction (**d**), another stretch in direction perpendicular to in (\mathbf{d}^{\perp}). and finally a twist. in particular an infinitesimal circle is transformed to an ellipse (may not be conformal).

• C-R equations :

• now as f is analytic \implies $f'(z) \in \mathbb{C}$ so multiplying by Jacobian matrix is equivalent to a complex multiplication now as

(a+ib)(x+iy) = (ax-by)+i(bx+ay)

$$\rightarrow \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax - by \\ bx + ay \end{bmatrix}$$
we have $J = \begin{bmatrix} \partial_x u & \partial_y u \\ \partial_x v & \partial_y v \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$. i.e. $\partial_x u = \partial_y v, \quad \partial_y u = -\partial_x v.$
 $i \partial_x f = \partial_y f.$

which gives the Cartesian-Cartesian form(C-C) now in Polar-Cartesian (P-C) form we have $f(re^{i\theta}) = u + iv$ and C-R equations are

$$\vartheta_{\theta} v = r \vartheta_{r} u, \quad \vartheta_{\theta} u = -r \vartheta_{r} v.$$

 $\vartheta_{\theta} f = i r \vartheta_{r} f.$

(P-P) form $f(re^{i\theta}) = Re^{i\Psi}$ C-R equations

 $\partial_{\theta} R = -rR\partial_{r}\Psi, \quad R\partial_{\theta}\Psi = r\partial_{r}R.$

(C-P) form $f(x + iy) = Re^{i\Psi}$. C-R equations

$$\partial_{\chi}R = R\partial_{\chi}\Psi, \quad \partial_{\chi}R = -R\partial_{\chi}\Psi.$$

• General properties of Analytic functions:

• if f, g are analytic then f + g, $f \times g$, $f \circ g$, f^{-1} are analytic when ever they are defined, in particular as f is amplitwist locally there is a 1-1 correspondence in a neighbourhood of non critical points to their images \implies that local inverse exists.

■ if f is analytic in E then so is f' (i.e. f is infinitely differentiable in the defined region)

• every zero or an analytic point is isolated (generally **p**-point of **f** or pre-image of **p** in **f** doesn't have a limit point.)

• Identity/Uniqueness Theorem: restating the above we have, if f(z) is analytic in **D** and if **S** set of zeroes of f(z) and if **S** has a limit point in **D** then $f(o) \equiv o$ in **D** (in general if **p**-points of **f** has a limit point then $f(z) \equiv p$).

• Extending the above we get, if even an arbitrarily small segment of curve is crushed to a point by an analytic mapping, then its entire domain will be collapsed down to that point (i.e. the function is constant) (this property is known as **Rigidity**)

• from above if f, g analytic agree on a curve or more generally $\{a_n\} \mapsto a$ then $f \equiv g$.

• if some identity of analytic function f(z) holds when restricted to \mathbb{R} then it holds for entire \mathbb{C} . (eg: odd and evenness.)

6 Analytic continuation

• an analytic function or a power series can be extended (from defined) to other regions this is analytical so called Analytic continuation.

• Analytic continuation via reflection:

• if f is an generalization of a real function (defined on \mathbb{R}) and is known in upper or lower parts of real axis (in some region with some parts of \mathbb{R} as boundary) then it can be **analytically continued by** $f * (z) = \overline{f(\overline{z})}$ in the other half part (reflection by \overline{z} part of region)(this holds by property of rigidity of analytic functions).

• In general if f maps a line (L) to another line (\hat{L}) then we can analytically continue one side of L to the other by using the fact that points symmetric in L map to points symmetric in \hat{L} .

• similarly if f maps a circle C to circle \hat{C} then mobius transforms can be used to translated these to symmetries i.e. $M : C \mapsto L$, $\hat{M} : \hat{C} \mapsto \hat{L}$ (as composition by mobius transfor ehic are analytic doesnt change the analyticity of $f \mapsto \hat{M} \circ f \circ M^{-1}$).

Schwarzian Reflection:

• Given a sufficiently smooth curve K, it is possible to find an analytic function $S_{\mathbf{K}}(z)$ such that $z \in \mathbf{K} \implies S_{\mathbf{K}}(z) = \overline{z}$ then

• Schwarz function of $K = \tilde{z} = \Re_K(z) = \overline{S_K(z)}$.

• clearly if $q \in K$ $\tilde{q} = \overline{S_{K}(q)} = \overline{\overline{q}} = q$ i.e. remains unchanged.

• Also as S_K just amplitwists infinitesimal disk at $q \in K$ to infinitesimal disk in $\overline{q} \in \overline{K}$ we observe that for $S_K | qp \mapsto \overline{qp}$ (for $p, q \in K$, qp infinitesimal) amplification = 1 and twist = -2ϕ where ϕ is the angle b/w tangent to K at q with horizontal

• so from above we get if **a** is on infinitesimal circle passing through **K** then $\tilde{a} = \mathfrak{R}_{K}(a)$ is reflection along the tangent of **K**. i.e \mathfrak{R}_{K} near **K** is sort of like Reflection in **K** (pseudo).

• \mathfrak{R}_{K} is anticonformal so $\mathfrak{R}_{K} \circ \mathfrak{R}_{K}$ is conformal so analytic (as amplification=1) and as $\mathfrak{R}_{K} \circ \mathfrak{R}_{K}$ maps infinitesimal areas around K to itself thus agrees with Identity so is Identity i.e. $\mathfrak{R}_{K} \circ \mathfrak{R}_{K}(z) = z$.

• Now if K is a smooth enough curve to posses S_K and any analytical map f defined on a region bordering K such that $\hat{K} = f(K)$ also posses $S_{\hat{K}}$ then we can analytically continue f around K (reflection of region by K) by demanding points symmetric to K are mapped to points symmetric to \hat{K} by f and this analytic continuation is given by:

$$\mathsf{F}=\mathfrak{R}_{\hat{\mathsf{K}}}\circ\mathsf{f}\circ\mathfrak{R}_{\mathsf{K}}.$$

7 Complex Integration

• we define complex integration as the generalized Riemann Integration over a given path **a** to **b** or as contour integration

• clearly integration here depends on path

• complex integration can be visualized as weighted vector sum : if **S** is path from **a** to **b** and Δ_j 's are vector decomposition (partition of **S** and linearly) that form **S**, $w_j = f(\text{mid } \Delta_j)$ i.e f(mid points of Δ_j .) then we can generalize as

$$\int_{S} f(z) dz = \sum_{j \to \infty} w_j \Delta_j$$

• from above we get: if $|f| \le M$ in image of K. then

$$\left| \int_{S} f(z) dz \right| \leq M. \text{length of } K.$$

• Winding number and properties :

• winding number for a closed loop L and a point a = v(L, a) is the number of revolutions z - a makes as it traces L (where we fixing a direction for counter-clockwise revolution is +ve and clockwise is -ve by convention)

• A simple loop is a closed curve that doesnt intersect with itself

• now as a point moves from left to right if it crosses a boundary of the loop and the loops direction is downwards (upwards) the winding number increased (decreases) by 1 (here the first entry of the point to loop is made to be in loop moving in downwards direction).

• we define inside of a loop L to be regions (points) where $v[L, \alpha] \neq o$.

• Hopf's degree Theorem(ristricted to C): A loop K may be continuously deformed into another loop L, without ever crossing the point p, if and only if K and L have the same winding number round p.

• **d** is a **p**-point of a function **f** if set of pre-images of **p** in **f** contains **d** i.e. $\mathbf{d} \in \mathbf{f}^{-1}(\mathbf{p})$.(pre-image)

• **Argument-Principle** theorem: If f(z) is analytic inside and on a simple loop Γ , and **N** is the number of **p**-points (counted with their multiplicities) inside Γ , then **N** = $\nu(f(\Gamma), p]$.

• if f analytic, f(a) - p = o and for $\Delta = z - a$ $f(a + \Delta) = p + \Omega(Z)\Delta^n$ (obtained by Taylor series) here algebraic multiplicity of a in f is n, for sufficiently small circle C_a around a that doesnt have any other p-points then

$$v(f(C_{\alpha}), \alpha) = n.$$

i.e. $f(C_{\alpha})$ loops around p exactly n times.

• now we define v(a) for a continuous function **h** as : if h(a) = p, Γ_a is the loop having only **a** and no other **p**-points then topological multiplicity $v(a) = v(h(\Gamma_a), a)$.

• clearly as analytical maps are conformal we have $\nu(\alpha)$ is always +ve ($\neq 0$.) for analytic functions

• v(a) = sign of det(J(a)) where J is Jacobian

• **Topological Argument-Principle** theorem: for a continuous map **h** the total number of **p**points inside Γ . (counted with their topological multiplicities) is equal to the winding number of **h**(Γ) round **p**.

• **Darboux's Theorem** : If an analytic function h maps Γ onto $h(\Gamma)$ in one-to-one fashion, then

it also maps the interior of Γ onto the interior of $h(\Gamma)$ in one-to-one fashion.

• **Rouche's Theorem** : for f, g analytic in and on Γ , If |g(z)| < |f(z)| on Γ , then (f + g) must have the same number of zeros inside Γ as f.

• **Brouwer's Fixed Point Theorem** : any continuous mapping of the disc to itself will have a fixed point.

In general there must be a fixed point if the disc is mapped into its interior and there are at most a finite number of fixed points. (now if the map is analytic then the number of fixed points inside the disk is only one).

• If f is analytic inside and on a simple loop Γ then no point outside $f(\Gamma)$ can have a preimage inside Γ .(i.e interior of Γ maps to interior of $f(\Gamma)$.)

• Maximum Modulus Theorem : The maximum (minimum respectively if $f(z) \neq o$ inside the closed boundary) of |f(z)| on a region where f is analytic is always achieved by points on the boundary, never ones inside.

• Schwarz's Lemma : If an analytic mapping of the disc to itself leaves the center fixed, then either every interior point moves nearer to the center, or else the transformation is a simple rotation. (i.e. them map is contractive towards the center).

• General Schwarz's Lemma :

If $f : \Delta(\{|z| < 1\}) \mapsto \Delta$ is analytic and has a zero of order n at origin then:

_

$$|f^n(o)| \le n!$$

 $|\mathbf{f}(z)| < |z|^n \ \forall z \in \Delta.$

• if Equality holds (any one) for any point inside Δ other than **o** then $f(z) = az^n$, |a| = 1.

• modifying Schwarz's lemma we get for f analytic in $\Delta(a, R)$, $|f(z)| \leq M$ in $\Delta(a, R)$ and f(a) = o then (applying Schwarz's lemma for g(z) = f(Rz + a)/M i.e. $z \rightarrow Rz + a$ for |z| < 1)

 $|\mathbf{f}(z)| \leq \frac{\mathbf{M}|z-\mathbf{a}|}{\mathbf{R}}$

for every $z \in \Delta(\mathfrak{a}, \mathbb{R})$.

 $|\mathbf{f'}(\mathbf{a})| \leq \frac{M}{\mathbf{R}}.$

■ and if equality holds for any two then f = $M\varepsilon(z-\alpha)/R$ for some $|\varepsilon| = 1$.

• Schwarz-Pick Lemma : Unless an analytic mapping of the unit disc to itself is a automorphism the hyperbolic separation of every pair of interior points decreases.

i.e.

if f is analytic on Δ , $|\mathbf{f}(z)| \leq \mathbf{1} \forall z \in \Delta$ and f(a) = b for some $a, b \in \Delta$, then

$$|\mathbf{f'}(\mathbf{a})| \leq \frac{\mathbf{1} - |\mathbf{f}(\mathbf{a})|^2}{\mathbf{1} - |\mathbf{a}|^2}.$$

and for $\mathfrak{a}, \mathfrak{a}' \in \Delta$

$$\rho(f(a), f(a')) \leq \rho(a, a').$$

where $\rho(z, \mathbf{a}) = |(z - \mathbf{a})/(\overline{\mathbf{a}}z - \mathbf{1})|$.

• Liouville's Theorem : An analytic mapping cannot compress the entire plane into a region lying inside a disc of finite radius without crushing it all the way down to a point, i.e. a bounded entire function is constant or bounded harmonic function is constant (by Taylor series)

• Generalized Liouville's Theorem : if f is an entire function such that $|f(z)| \leq M|z|^{\alpha}$ for all sufficiently large |z| and $\alpha \ge 0$, M > 0 then f reduces to a polynomial of maximum degree **n** closest integer to α .

• Generalized Argument-principle theorem :Let f be analytic on a simple loop Γ and analytic inside except for a finite number of poles. If **N** and **M** are the number of interior p-points and poles, both counted with their multiplicities, then $v(f(\Gamma), p) = N - M$.

• for any closed loop $L \oint_L \frac{1}{z} dz = 2\pi i \nu(L, o)$ in general

$$\oint_{L} \frac{1}{z-p} dz = 2\pi i \nu(L,p).$$

• now as $Im(ab) \equiv a \times b$ it gives $2 \times$ the area enclosed by triangle formed by sides a and b | f(z) | may be expressed as the following power

vectors so we have for a simple loop L:

$$\oint_{\mathbf{L}} \overline{z} dz = 2\mathbf{i} \times \text{area enclosed by } \mathbf{L}.$$

for general loop L

$$\sum_{L} \overline{z} dz = 2i \times \sum_{\text{inside}} v_j A_j.$$

where A_j is the area enclosed by points which have $v_i = v(L, p) = a \neq o$ constant (i.e form a part of loop).

• Cauchy's Theorem : If an analytic mapping has no singularities "inside" a loop, its integral round the loop vanishes (i.e. = 0).

• from above we get in integral of analytic functions are path independent.

• Morera's Theorem : If all the loop integrals of f are known to vanish in a region then f is analytic in that region.

• if
$$m \neq -1$$
 then

$$\int_{\mathbf{A}}^{\mathbf{B}} z^{\mathbf{m}} dz = \frac{\mathbf{1}}{\mathbf{m}+\mathbf{1}} (\mathbf{B}^{\mathbf{m}+\mathbf{1}} - \mathbf{A}^{\mathbf{m}+\mathbf{1}})$$

• clearly from above we have

$$\oint z^{\mathbf{m}} dz = \mathbf{0} \text{ if } \mathbf{m} \neq -\mathbf{1}.$$

• **Deformation Theorem** : If a contour sweeps only through analytic points as it is deformed, the value of the integral does not change.

• Cauchy's formula : if f(z) is analytic inside a simple loop L then

$$\mathbf{f}^{\mathbf{n}}(\mathbf{a}) = \frac{\mathbf{n}!}{2\pi \mathbf{i}} \oint_{\mathbf{L}} \frac{\mathbf{f}(z)}{(z-\mathbf{a})^{\mathbf{n}+\mathbf{1}}} \mathbf{d}z.$$

• General Cauchy's theorem : if L is not simple then

$$\mathbf{v}(\mathbf{L},\mathbf{a})\mathbf{f}^{\mathbf{n}}(\mathbf{a}) = \frac{\mathbf{n}!}{2\pi \mathbf{i}} \oint_{\mathbf{L}} \frac{\mathbf{f}(z)}{(z-\mathbf{a})^{\mathbf{n}+\mathbf{i}}} dz.$$

• Taylor Series : If f(z) is analytic, and a is neither a singularity nor a branch point, then series, which converges to f(z) within the disc whose radius is the distance from **a** to the nearest singularity or branch point:

$$f(z) = \sum_{n=0}^{\infty} c_n (z-a)^n.$$
 where
$$c_n = \frac{f^n(a)}{n!} = \frac{1}{2\pi i} \oint_L \frac{f(z)}{(z-a)^{n+1}} dz.$$

• Laurent Series : if f is analytic inside an annulus centered at a then f an be expressed as the following series (for any simple loop K inside the annulus)

$$f(z) = \sum_{-\infty}^{\infty} a_n (z-a)^n$$
, where
$$a_n = \frac{1}{2\pi i} \oint_L \frac{f(z)}{(z-a)^{n+1}} dz.$$

• General Residue Theorem : from Laurent series and integral of z^m we have if f is analytic then for a loop L containing only isolated singularities $\{a_k\}$ of f, we have:

$$\oint_{\mathbf{L}} \mathbf{f}(z) dz = 2\pi i \sum_{\mathbf{k}} \mathbf{v}[\mathbf{L}, \mathbf{a}_{\mathbf{k}}] \mathbf{Res}(\mathbf{f}, \mathbf{a}_{\mathbf{k}}).$$

where $\operatorname{Res}(f, a_i) = a_{-1}$ or coefficient of $1/(z - a_i)$ when f is written as Laurent series centered at a_i containing no other singularity.

• if **a** is a pole of **f** of order **m**.

(i.e. $\lim_{z\to a} (z-a)^m f(z) = c$ defined) then $\operatorname{Res}(f(z), a)$

$$= \lim_{z\mapsto a} \frac{\mathbf{1}}{(\mathbf{m}-\mathbf{1})!} \frac{d^{\mathbf{m}-\mathbf{1}}}{dz^{\mathbf{m}-\mathbf{1}}} (z-a)^{\mathbf{m}} \mathbf{f}(z).$$

• if P/Q has a simple pole (order 1) at a then

$$\operatorname{Res}\left(\frac{\mathrm{P}}{\mathrm{Q}}(z),\mathfrak{a}\right)=\frac{\mathrm{P}(\mathfrak{a})}{\mathrm{Q}'(\mathfrak{a})}.$$

• Gauss mean value theorem : for a harmonic where N_h , P_h deno function ϕ ($\partial_x^2 \phi + \partial_y^2 \phi = o$) the mean value of poles of h inside C ϕ on a circle is equat to the vale of function at plicities and order).

center of the circle i.e. if f(z) is analytic then

$$\frac{1}{2\pi}\int_{0}^{2\pi}f(a+re^{i\theta})d\theta=f(a)$$

• Residue at infinity : for analytic f we have

$$\operatorname{Res}(f(z),\infty) = -\operatorname{Res}\left(\frac{f(1/z)}{z^2},\mathbf{0}\right)$$

 $= \frac{1}{2\pi i} \oint_{C^-} f(z) dz = -a_{-1}, \text{ where } C^- \text{ is a circle} \\ \text{oriented } -\text{vely covering all singularities } (\neq \infty) \\ \text{ of } f(z).$

• **Extended Residue theorem**: for analytic **f** we have

$$\operatorname{Res}\left(\frac{f(\mathbf{1}/z)}{z^2},\mathbf{0}\right) = \sum_{k} \operatorname{Res}(f,a_k)$$

where $a_k \neq \infty$ also if simple loop γ includes all finite singularities of f(z) then

$$\oint_{\gamma} \mathbf{f}(z) dz = 2\pi \mathbf{i} \operatorname{Res} \left(\frac{\mathbf{f}(\mathbf{1}/z)}{z^2}, \mathbf{0} \right).$$

• Argument-Principle theorem (integral form) : if f(z) is a meromorphic function in domain $D \subseteq C$, has finitely many zeroes and poles in D, C is any simple loop in D such that no pole or zero lie 'on' C then

$$\oint_{\mathbf{C}} \frac{\mathbf{f}'(z)}{\mathbf{f}(z)} dz = 2\pi \mathbf{i}(\mathbf{N} - \mathbf{P}).$$

where **N** and **P** denote the number of zeroes and poles of **f** inside **C** (counted with their multiplicities and order).

• General Rouche's Theorem : for f, g analytic in and on C with finite number of poles and zeroes inside the Domain covering C, If |g(z)| < |f(z)| on C, then

$$N_{f+q} - P_{f+q} = N_f - P_f$$

where N_h , P_h denote the number of zeroes and poles of h inside C (counted with their multiplicities and order).

• Alternative form of Rouche's Theorem : if same conditions as above hold for g - f(z), f(z) and |g(z) - f(z)| < |f(z)| then

$$N_g - P_g = N_f - P_f.$$

(can used for calculating the number of zeroes of polynomial in a give loop)

• Application of Rouche's Theorem to polynomials

• eg: consider the polynomial $g(z) = z^6 - 5z^4 + 7$

* now $|g(z) - 7| \le |z|^6 + 5|z|^4 \le 7$ if $|z| \le 1$ as $1 + 5 \le 7$) thus g(z) has same number of zeroes as f(z)7 in $|z| \le 1$ i.e. g(z) has no zeroes inside $|z| \le 1$.

★ similarly if $f(z) = -5z^4$ we have $|g(z) - f(z)| \le |z|^6 + 7 \le 5|z|^4$ if $|z| \le 2$ (as $z^6 + 7 = 71 \le 5.2^4 = 80$) thus g(z) has 4 zeroes in $|z| \le 2$.

* similarly if $f(z) = z^6$ we have $|g(z) - f(z)| \le 5|z|^4 + 7 \le |z|^6$ if $|z| \le 3$ (as $5.3^4 + 7 = 412 \le 3^6 = 729$) thus all zeroes of g(z) lie inside $|z| \le 3$.

8 Mics Properties

• A real valued function of a complex variable $f : \mathbb{C} \mapsto \mathbb{C}$ has derivative zero or non existent i.e if f is analytic the is a constant.

• for an analytic function in domain **D** if one of : |f|, Re(f), Im(f), Arg(f) is constant in **D** then f is constant.

• Harmonic functions:

• $\phi(x, y)$ a real valued function is harmonic iff $\nabla^2 \phi = 0$.

• real and imaginary parts of analytical function's are harmonic (in the defined "Domain"(a connected open set)) (converse is not true).

• f(z) is analytic in Domain D iff real and imaginary parts of both f(z) and zf(z) are harmonic.

• if ϕ is a harmonic function in a Domain then $f = \phi_x - i\phi_y$ is analytic in the domain.

Harmonic conjugate of harmonic function
 φ is another harmonic function ψ such that

 $f = \phi + i\psi$ (i.e ψ is the imaginary part of anlytic function whose real part is ϕ).

• if ϕ is harmonic in a simply connected region then it has a harmonic conjugate in this region.

• if f is analytic in a simply connected region Ω and $f(z) \neq o$ in Ω then $\exists h$ analytic in Ω such that

$$e^{\mathbf{h}(\boldsymbol{z})} = \mathbf{f}(\boldsymbol{z}).$$

(h'(z) = f'(z)/f(z) claim $f.e^{-h(z)} = c = e^k$ prove by differentiating) (domain can be whole \mathbb{C}).

• if f satisfies the above conditions then $\exists g$ analytic in Ω such that $g^2(z) = f(z)$ in Ω (choose $g(z) = e^{h(z)/2}$).

• **Cauchy's Inequality** : if **f** is analytic in an open disk centered at a of radius **R** = $\Delta(\alpha, \mathbf{R}) = |z - \alpha| < \mathbf{R}$ and $|\mathbf{f}(z)| \leq \mathbf{M}$ on boundary $\overline{\Delta(\alpha, \mathbf{r})}$ for $\mathbf{o} < \mathbf{r} < \mathbf{R}$ then we have

$$|\mathbf{f}^{\mathbf{k}}(\mathfrak{a})| \leq \frac{\mathbf{M}.\mathbf{k}!}{\mathbf{r}^{\mathbf{k}}}.$$

(use estimation of Cauchy integral).

• for an open set D if $f_n : D \mapsto \mathbb{C}$ are analytic for each n and if $f_n \mapsto f$ uniformly on each compact subset of D then f is analytic and more over $f_n^k \mapsto f^k$ uniformly in the compact subsets, the same is true for series also if all conditions hold.

• every zero of an analytical function is isolated.

• from above we have if a_n are the zeros of analytical map $f, a_n \mapsto a \in \mathbb{C}$ then $f \equiv o$.

• in general if if q_n are p-points of analytical map f, $q_n \mapsto q \in \mathbb{C}$ then $f \equiv p$ (use $h(q_n) = f(q_n) - p = o$.)

• also if f, g analytic in Domain D, f - g has set S of zeroes that has a limit point then $f \equiv g$ in D (in general if f - g has set Q of p-points that has a limit point then f(z) = g(z) + p.)

• four distinct points in \mathbb{C}_{∞} all lie on a circle or line iff their cross ratio is real.

• a singularity at z_0 of f(z) is removable if f can be defined at z_0 so that it is analytic at z_0 .

• Riemann's Removable Singularity theorem: | i.e. if f has an isolated singularity at z_0 then z_0 is

removable iff one of the below holds.

- f is bounded in deleted neighborhood of z_0 .
- lim f(z). exists $z \mapsto z_0$
- $\lim_{z \to z_0} (z z_0) f(z) = 0.$

• Picard's Little Theorem : every non constant entire function only omits at most one value, from this we get if a entire function omits two value then it is a constant.

• Picard's Great theorem : if z_0 is the essential singularity of f(z) analytic in $\Delta(z_0, r) - z_0$ then $\mathbb{C} - f(\Delta(z_0, \mathbf{r}) - z_0)$ is a singleton set.

• Picards little theorem for meromorphic functions: A meromorphic function omits three distinct values then it is a constant.

• if f is an even anlytic function (i.e. f(z)=f(z)) then for z_0 isolated singularity of f $\operatorname{Res}(f(z), z_0) = 0$. (there are no odd power terms in Laurent series expansion).

• if analytic function f is such that f(z) = $f(z + z_1) = f(z + z_2)$ (doubly periodic) and if $z_1/z_2 \notin \mathbb{R}$ then f is a constant (as z_1, z_2 will be linearly independent).

• if $\mathbf{p}(z)$ is a polynomial of degree $n \ge 1$ then every zero of $\mathbf{p'}(z)$: (z'_k) lies in the complex hull of zeroes of $\mathbf{p}(z)$: (z_k) i.e $z'_k = \sum_{k=1}^n \lambda_k z_k$, for $\sum_{k=1}^{n} \lambda_k = 1$.

• if f is analytic in |z| < M iff $f(\overline{z})$ is also analytic in |z| < M (as amplitwistness of f(z)) doesnt change).

• if $\mathbf{p}(z)$ $\mathfrak{a}_0 + \mathfrak{a}_1 z + \mathfrak{a}_2 z^2 + \cdots + \mathfrak{a}_n z^n$ = $a_{n-1}z^{n-1} + z^n$, simple loop C covers all zeroes of $\mathbf{p}(\mathbf{z})$ then

$$\oint_{C} \frac{zf'(z)}{f(z)} = -2\pi i a_{n-1}.$$

$$\oint_{C} \frac{z^2 f'(z)}{f(z)} = 2\pi i (a_{n-1}^2 - 2a_{n-2})$$

• z_1, z_2 and z_3 are vertices of equilateral triangle iff

$$\frac{1}{z_1-z_2}+\frac{1}{z_2-z_3}+\frac{1}{z_3-z_1}=0.$$

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1.$$

• z_1, z_2 and z_3 iff

$$z_3 = t(z_1) + (1-t)z_2 \text{ for } t \in \mathbb{R}$$

(i.e equation of line in **2D**.)

• if analytic function f(z) is real on real line and purely imaginary on imaginary axis then f(-z) = -f(z) i.e. f is odd.

• for f(*z*) analytic in Domain D then:

• if f is even i.e. f(z) = f(-z) then $\exists g(z)$ analytic in **D** such that $f(z) = g(z^2)$.

• if f is odd i.e. -f(z) = f(-z) then $\exists g(z)$ analytic in **D** such that $f(z) = zg(z^2)$.

■ Every meromorphic function in C can be represented as quotient of two entire functions. **Open mapping Theorem** : if f(z) is a non constant analytic function in Domain D then it is open mapping i.e. f(O) is open for every open set $O \in C$.

• Clearly if f is analytic in D a Domain (open connected set) then $f(\mathbf{D})$ is also a Domain.

• Hurwitz's Theorem : if {f_n} are non vanishing $(\neq 0)$ in a Domain D and converges uniformly to f on every compact subset of D then either f has no zeroes or $f \equiv 0$.

• Local mapping theorem : if f is analytic at a the there exist a neighborhood of \mathbf{a} where \mathbf{f} is one-one iff $f'(a) \neq 0$. or

if f is univalent and analytic in a Domain D then $f'(z) \neq o$ in **D**.

• if f is meromorphic at pole **a** and is one-one in neighborhood of \mathbf{a} iff \mathbf{a} is a simple pole.

 from above if f is meromorphic and univalent in **D** then f has only simple poles in **D**.

• for f analytic at ∞ is univalent at ∞ (in its nbd) iff $\operatorname{Res}(\mathbf{f}, \infty) \neq \mathbf{0}$.

• **Riemann mapping theorem** : every simply connected domain which is a proper subset of \mathbb{C} is Conformally equivalent to a unit disk i.e.

if Ω is a simply Connected open set then there exist a function f analytic in Ω such that $f(\Omega) =$ Δ.

References

- Needham T.: Visual Complex Analysis, Oxford University press,(2023).
- [2] Ponnusamy S.: Foundations of Complex Analysis, Narosa pubsishing house,(2011).