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1 Basic Definitions
Ring R : is a set together with two binary
operations + and × (addition and multiplication)
with properties :
■ (R,+) is an abelian group
■ × is associative ( i.e. a× (b× c) = (a× b)× c)
■ × distributes over + (i.e. (a + b) × c =

(a× c) + (b× c)).

if R is commutative w.r.t. × then R is a Com-
mutative ring.

Additive identity in R is denoted by 0.

R is said to have identity (1) if there is a mul-
tiplicative identity in R

i.e. ∃1 ∈ R s|t 1 × a = a× 1 = a ∀a ∈ R.

now for a ∈ R additive inverse of a is de-
noted by −a and multiplicative inverse (if
exists in R) by a−1.

Division Ring ( or skew field) D

is ring with identity 1, 1 ̸= 0 and for a ele-
ment a ∈ R not equal to 0 there exists b ∈
R s|t ab = ba = 1. i.e. ∀0 ̸= a ∈ Ra−1 ∈ R.

for a ring R is a non zero a ∈ R is a Zero
Divisor if there is non zero b ∈ R such that
ab = 0 or ba = 0.

for a ring R with 1 : u ∈ R is a unit in R if it
has multiplicative inverse in R
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Integral domain I

is a commutative ring with identity 1 ̸= 0

having no zero divisors.

Field F

is a commutative ring with identity in which
any non zero element is unit i.e. 0 ̸= a ∈
F =⇒ a−1 ∈ F. or a commutative Division
ring.

Subring S of ring R is subgroup of R which
is in itself a ring with same operations i.e. S
is subring of R if (S,+) is subgroup of (R,+)
and S is closed under ×.
(i.e. a,b ∈ S =⇒ ab ∈ S)

Center of a ring R is set {z ∈ R s|t zr = rz∀r ∈
R} i.e. all the elements that commute in R.
(multiplicatively.)

a ∈ R commutative ring is nilpotent if am =
0 for some m ∈ Z+

a ∈ R commutative ring is idempotent if
a2 = a.

2 Properties of Rings
(instead of writing a× b we just write ab)

for any a,b ∈ R (ring)
■ a0 = 0a = 0.
■ (−a)b = a(−b) = −(ab).
■ (−a)(−b) = ab

■ if 1 ∈ R then −a = (−1)a.

An element cannot be both a zero divisor
and a unit in R. ( There can be elements that are
neither)

if ab = 0 in a integral domain I with a,b ∈ I

then at least one of a or b is zero.

Cancellation Laws holds in any Integral do-
main. (note: the existence of multiplicative inverse

is not needed here.)

Any Finite Integral Domain is a Field
(use bijective map I → I by x → ax for non-zero
a ∈ I.)

if S, T subgrings of R then :
■ S∩ T is subring of R. ( thus any arbitrary non-
empty intersection of subrings is a subring.)
■ S is subring of T is subring of R then S is
subring of R.

Properties of Center of a Ring

■ Center of a ring is a subring.
■ Center of a Division ring is a Field.
■ for fixed a ∈ R set C(a) = {r ∈ R s|t ra =
ar} is a subring of R containing a.
■ Center of R = ∩

a∈R
C(a).

■ for any a ∈ D division ring then C(a) is a
division ring.

if x2 = 1 for some x ∈ I integral domain then
x = ±1 only.

if x ∈ R commutative ring is nilpotent then
■ x is either zero or zero divisor (use
xm = xm−1x = 0)
■ rx is nilpotent for any r ∈ R.
■ if 1 ∈ R then 1+x is a unit in more general
u+ x is a unit for any unit u and nilpotent
x. ( use (1 + x)(1 − x + x2 + . . + (−1)m−1xm−1) =

1 + (−1)m−1xm = 1.)

for rings R and S their direct product R×S is
ring under corresponding component wise
operation. ( thus even any number of direct prod-
uct of rings is a ring )

now if R,S are non zero fields then R× S is
never a field. (as (1, 0)(0, 1) = (0, 0))
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Characteristic ch(R)

Characteristic of a ring is a number

n s|t n1 =

n times︷ ︸︸ ︷
1 + 1 + . . + 1 = 0 if order of 1 is

infinite then characteristic is said to be 0 ( not∞.)

every Integral domain has a Character 0

or prime. (if q = mn is characteristic of I then
mn.1 = 0 so either m.1 = 0 or n.1 = 0 a contradiction
for minimality.)

3 Ring Homomorphism
and Ideals

if R,S are two rings the a map ϕ : R → S

is a ring Homomorphism if it satisfies
■ ϕ(a+ b) = ϕ(a) +ϕ(b)
■ ϕ(ab) = ϕ(a)ϕ(b)

■ kernel of ϕ denoted by ker ϕ is the set in
R mapped to o in S

■ image of ϕ and ker ϕ are subrings.
■ if α ∈ ker ϕ then rα ∈ ker ϕ ∀r ∈ R

i.e. r ker ϕ ⊆ ker ϕ

Concept of Ideal

From the above point and to define the quo-
tient operations as in group homomorphism
i.e. if I ⊆ R and to the quotient operations

(r+ I) + (s+ I) = (r+ s) + I

(r+ I)(s+ I) = rs+ I

to be well defined we need to have that re-
placement by any class representative gives
same classes i.e. if α,β ∈ I then
(r+α)(s+β) + I = rs+ I

to achive this : we need I ⊴ R (w.r.t +) this
can be satisfied by any subgroup of R as R

is abelian in +, letting r = s = 0 we need
I closed under multiplication so these two
conditions boils down to I must be subring
of R and also we need to have that I must

be closed under left and right multiplication
from any element in R i.e. rI ⊆ I, Ir ⊆ I ∀r ∈
R this leads us to define Ideals

I ⊆ R is a left ideal in R if I is subring of R
and closed under left multiplications by ele-
ments of R, similarly I ⊆ R is a right ideal in
R if I is subring of R and closed under right
multiplications by elements of R.
Finally I ⊆ R is an Ideal of R if it is both left
and right ideal of R

Ideal for Rings is ‘similar’ to Normal sub-
groups for Groups, Most of the follow-
ing properties are Ring analogue of Group
properties.

if I is an ideal of R ring then the quotient
group (additive {r+ I}) is a ring with binary
operations as defined above. This Group R/I

is called the Quotient ring of R by I.

Isomorphism Theorems for Ring

■ 1st Isomorphism Theorems for Ring :
if ϕ : R → S is a ring homomorphism then
ker ϕ is an ideal of R, image of ϕ in S is
a subring of S and R/ker(ϕ) is isomorphic
(bijective ring homomorphism) to ϕ(R). let
∼= denote Ring isomorphism from here on
so R/ker(ϕ) ∼= ϕ(R)
if I is an ideal of R then the natural pro-
jection homomorphism πI : R → R/I by
πI(r) = r + I is ring homomorphism with
kernel I i.e. ideal ⇐⇒ kernel.
■ 2st Isomorphism Theorems for Ring :
If A is subring of R and B ideal of R then
A+ B = {a+ b|a ∈ A,b ∈ B} is a subring of
R, A ∩ B is an ideal of A and (A+ B)/B ∼=
A/(A∩B).
■ 3st Isomorphism Theorems for Ring :
if I, J are ideals of R such that I ⊂ J then J/I

is an ideal of R/I and (R/I)/(J/I) ∼= R/J

■ 4st Isomorphism Theorems for Ring :
If I is an Ideal of R ring then the map A →
A/I is bijective between the set of subrings
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A of R that contain I and set of subrings of
R/I also A is an ideal of R containing I iff
A/I is an ideal of R/I.

if ϕ : R → S is homomorphism and x ∈ R is
nilpotent then ϕ(x) is nilpotent in S.

3.1 Properties of ideal

For the rest of this notes let every ring
mentioned be a ring with identity unless
specified.

for ideals I, J of R ring define I + J = {a +
b|a ∈ I,b ∈ J} and IJ = ⟨ab|a ∈ I,b ∈ J⟩
(i.e. the set generated by ab or set of finite sums of
element of form ab) then
■ I+ J is the smallest ideal containing both
I and J in R,
■ IJ ⊂ I∩ J and both IJ, I∩ J are ideals in R.
■ if I+ J = R then IJ = I∩ J.

Ideal Generated by A ⊆ R denoted by (A)
is the smallest ideal of R ring containing A.

define RA = {r1a1 + r2a2 + . . + rnan|ri ∈
R,ai ∈ A} and AR = {a1r1 + a2 + r2a2 + . . +
anrn|ai ∈ A, ri ∈ A} and RAR = {r1a1r

′
1
+

r2a2r
′
2
+ . . + rnanr

′
n|ri, r ′i ∈ R,ai ∈ A}

if R is commutative then RAR = RA = AR =
(A).

Principle Ideal

An ideal generated by a single element is
called a Principle Ideal,
An ideal generated by a finite set is called
Finitely generated ideal.

I is an ideal of R ring and I = R iff I contains
an unit of R.
So we get R is a field iff the only ideals of R
are {0} and R.

if F is field then any homomorphism from
F is trivial (ker(ϕ) = F) or injective (ker(ϕ) = 0)
i.e. any non trivial homomorphism from a
field is injective

Maximal Ideal
M a proper ideal of R ring is called a Maxi-
mal Ideal of R if the only ideal containing M

in R is R. i.e. no other proper ideals contains
M in R.

M is maximal ideal of R ring iff R/M is a
field.

for a Ring with identity every proper ideal
is contained in a maximal ideal
( inclusion forms a partial ordering of proper ideals
(non empty set) in the ring so a chain exist whose
elements always contain the given proper ideal, now
form an ideal by union of these ideals which is also
proper (prove) thus a having upper bound and by
Zorn’s lemma a maximal element which is the maxi-
mal ideal.)

Prime ideal
An ideal P is Prime Ideal of R ring if P ̸= R

and whenever ab ∈ R the a ∈ P or b ∈ P.
(this is sort of generalising ‘prime’ to a give ring R as
in Z+ if p is a prime and p|ab then p|a or p|b.)

for R a commutative ring P is prime ideal in
R iff R/P is an Integral domain.

from above point and similar point for max-
imal ideals we get :
in commutative ring R every maximal ideal
is a prime ideal

similarly a commutative ring with identity
is an integral domain iff {0} is prime ideal in
the ring.

in an Integral domain R (a) = (b) for some
a,b ∈ R iff a = ub for some unit u ∈ R.
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if P a prime ideal of R commutative ring and
P contains no zero divisors then R is an in-
tegral domain.

if ϕ : R → S be a ring homomorphism be-
tween two commutative rings with identity:
■ for P prime ideal in S then ϕ−1(P) is a
prime ideal in R or ϕ−1(P) = R

■ if ϕ is surjective and M maximal ideal in
S then ϕ−1(M) is maximal in R.

In a finite commutative ring with identity
every prime ideal is maximal ideal.
(use finite integral domain is a field.)

if R is commutative ring with property :
for every a ∈ R ∃n ∈ Z+ depending on
a s|t a

n = a then every prime ideal of R is
maximal ideal.

Local Ring

A commutative ring R is a local ring if it has
a Unique maximal Ideal.
■ If R is a local ring with maximal ideal M
then every element of R−M is a unit (pre-
cisely).
■ Conversely if R is commutative ring with
1 and if set of non units in R forms an ideal
M then R is a local ring with unique maxi-
mal ideal M.
■ eg: R subring of Q in which denomina-
tors are odd forms a local ring i.e. R =
{n/m| 2 ̸ |m, n,m ∈ Z} is local ring with
unique maximal ideal is the principle gener-
ated by 2 which is a prime in R.

Nilradical
if R is a commutative ring the set of all nilpo-
tent elements i.e.{x ∈ R|xm = 0, m ∈ Z+}

forms an Ideal called nilradical of R denoted
by N(R). (use binomial thm : if xn = 0 and ym = 0

then for k = 2 max(m,n) we have (x+ y)k = 0).
■ if N(R) is nilradical of R then the only
nilpotent element of R/N(R) is zero i.e.
N(R/N(R)) = {0}.

■ Prime Ideal of a commutative ring con-
tains every nilpotent element i.e. nilradical
of R commutative ring is contained in the
intersection of all prime ideals of R. ( more
precisely nilradical of R is the intersection of
all prime ideal in R. )

for a commutative ring R : R has exactly one
prime ideal iff every element of R is either
nilpotent of a unit iff R/N(R) is a field.

4 Ring of fractions

let R be a commutative ring and {0} ̸= D ⊆ R

that doesn’t contain 0, doesn’t contain any
zero divisors of R, closed under multiplica-
tion then there is a commutative ring Q with
1 such that R is a subring of Q and every el-
ement of D in Q has an inverse.
This ring Q has following additional prop-
erties :
■ every element of Q is of the form rd−1 for
some r ∈ R,d ∈ D in particular If D = R− {0}

then Q is a field.
■ Ring Q is the smallest ring containing R

in which all elements of D are units
(i.e. if ϕ : R → S is an injective homomorphism s|t

ϕ(d) is a unit in S then there is An isomorphic copy
of Q in S.)
this Q is called the Ring of Fractions. of D
w.r.t R.
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Construction of Ring of fractions

let F = {(r,d) s|t r ∈ R,d ∈ D} and define re-
lation ∼ on F by (r,d) ∼ (s, e) iff re = sd this
becomes an equivalence relation as d, e are
not zero divisors, denote equivalence class
of (r,d) by

r
d = {(a,b) s|t a ∈ R,b ∈ D and rb = ad}

then Q becomes the set of equivalence
classes under ∼
properties such as commutativity , 1 = d

d ,
additive inverse of a

d is −a
d , d−1 = 1

d ∀d ∈ D

hold making this Q the ring of fractions.

Q may also be denoted by D−1R to empha-
size the envolved R,D.
If R is integral domain and D = R− {0} then
D−1R is a field so is called Field of Frac-
tions of R.
If R is an integral domain, Q its field of frac-
tions then if any field F contains R ′

s|t R
′ ∼= R

then the subfield generated by R ′ in F is iso-
morphic to Q.

This concept of integral domains and field
of fractions are derived from observing Z, Q

this is generalized by
if F is Field then F contains a unique small-
est subfield that is either isomorphic to Q or
Z/pZ. ( depending on its characteristic.)

5 Euclidean Domain.
Norm N

Norm N on R integral domain is a function
from R → Z+ ∪ {0} with N(0) = 0.
if N(a) > 0 for a ̸= 0 in R then N is called
positive norm .

for R an integral domain is called an Eu-
clidean Domain if there is a norm N on R

such that for any a,b ∈ R with b ̸= 0 there
exist elements q, r ∈ R such that

a = qb+ r with r = 0 or N(r) < N(b)

here q is called quotient and r the remainder
of the division.

Euclidean Division algorithm is valid in an
Euclidean Domain (i.e. it stops after finite steps.)

Every ideal in Euclidean Domain is princi-
pal (i.e. generated by single element that has the
minimum norm.)

in a commutative ring R, a,b ∈ R and b ̸= 0

■ a is said to be multiple of b if there exist
x ∈ R s|t a = bx. denoted by b|a

■ Greatest common divisor of a,b ∈ R is a
non zero d ∈ R s|t d|a,d|b and if any other
d ′|a,d ′|b then d ′|d
this is denoted by (a,b) = d.

Properties of Gcd

■ if a,b ∈ R not zero , ideal generated
by a,b is principal and equal to (d) then
(a,b) = d ( literally (a,b) = (d) )
■ now for (a,b) = d in R if I ideal generated
by a,b then I is contained in (d) and any
principle ideal (d ′) contains I =⇒ (d) ⊆
(d ′)
■ as (d) = (d ′) then d = ud ′ for some unit
u ∈ R Integral domain we have :
in an Integral domain R if d ′,d are both g.c.d
of a,b then d = ud ′ for some unit u ∈ R.
■ if R is an Euclidean domain if (a,b) = d

in R then d = rn the last remainder in eu-
clidean algorithm applied to a,b in R and
d = xa+ yb for x,y ∈ R.

Universal side divisor
u ∈ R is Universal side divisor if for every
x ∈ R there is some z ∈ R∗ ∪ {0} ( set of units in
R + {0}) such that u|(x− z). i.e every x can be
written as x = qu+ z. for z unit or zero.
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Test for not Euclidean domain
If R is an integral domain which is not a field
, R is a Euclidean domain then there is a uni-
versal side divisor in R

(this point can be used to disprove a given ring is eu-
clidean domain.)

6
Principal Ideal
Domains

Principle ideal Domain is an Integral do-
main in which every ideal is principal.

Every Euclidean domain is a principal ideal
domain.

if R is a P.I.D. (Principal Ideal Domains) ,
(a,b) = d in R then d = xa+ by for x,y ∈ R

and d is unique upto multiplication by a
unit in R.

Every non zero prime ideal of a P.I.D. is a
maximal ideal

Dedekind-Hasse Norm
is positive norm on integral domainR such
that for every non zero a,b ∈ R either a ∈
(b) or there exist a non zero element of ideal
(a,b) which has a norm strictly smaller than
norm of b i.e. ∃s, t ∈ R s|t 0 < N(sa− tb) <
N(b).

test for not a P.I.D
Integral domain R is a P.I.D. iff R has a
Dedekind-Hasse Norm.

if R is an Integral domain in which every
prime ideal is principal then R is a P.I.D.

7 Unique Factorization
Domain

Irreducible and prime

For an Integral domain R :
■ r ∈ R a non-zero non-unit element is
called irreducible in R if whenever r = ab.
with a,b ∈ R

then at least one of a,b is a unit in R ( i.e. r

cannot be factored into only non units)
otherwise r is said to be reducible.
■ non zero p ∈ R is called prime in R if (p)
is a prime ideal in R.
( i.e. if ab ∈ (p) then p|ab so p|a or p|b analogous to
definition of ‘primes’ in Z.)
■ two elements a,b ∈ R are called asso-
ciates in R if the differ by a unit in R i.e
a = ub for some unit u ∈ R

In an integral domain every prime is irre-
ducible.

In a P.I.D. every non zero element is prime
iff irreducible.

U.F.D. (Unique Factorization Domain) : is
an integral domain in which every non zero
element which is not a unit can be written
as finite product of irreducibles and this de-
composition is unique upto associates. (i.e.
for every non zero non unit r ∈ R, r = pip2. .pn for
p ′
is irreducibles and if same r = q1q2. .qm for qi ir-

reducible then m = n and we can rearrange these
decompositions such that pi,qi are associates .)

In a U.I.D. every non zero element is prime
iff irreducible.

if a,b ∈ R a U.I.D are such that a =
upe1

1 pe2

2 . .pen
n and b = vpf1

1 pf2

2 . .pfn
n for u, v

units and p ′
is primes in R then

(a,b) = d

= p
min(e1,f1)
1 p

min(e2,f2)
2 . .pmin(en,fn)

n .
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Every P.I.D. is a U.I.D. in particularly every
Euclidean Domain is a U.I.D.

Fundamental theorem of Arithmetic
Z is U.F.D.

Commutative Ring with unity

Integral
domain

U.F.D

P.I.D

Euclidean
domain

Field

i.e. Field ⊂ Euclidean Domains ⊂ P.I.D. ⊂
U.F.D. ⊂ Integral domains ⊂ Commutative
Rings with 1

■ Subring of an Integral domain may not be
an Integral domain ( may not contain unity)
■ But if a Subring of Integral Domain con-
tains unity then it is an Integral domain
Here define a Subdomain of a Ring is Sub-
ring which is an Integral domain
so any Subring of Integral domain contain-
ing unity is a Subdomain
■ Subrings and Subdomains of U.F.D
maynot be U.F.D (eg: Z[

√
5] subring of C but not

an U.F.D)
■ Subrings and Subdomains of P.I.D
maynot be P.I.D (eg: Z[x] subring of Q[x], Z[x] is
not a P.I.D as ⟨x, 2⟩ is not principle ideal)
■ Subrings and Subdomains of Euclidean
Domains may not be Euclidean Domain (eg
Z[x] ⊂ Q[x])
■ Subrings and Subdomains of Fields

maynot be fields (eg Z ⊂ Q)

8
Quotient rings and its
properties

■ if R is commutative ring then R/I is also
a commutative ring (converse may not be
true).
■ if R is commutative and M/I is an ideal
in R/I iff M is an ideal containing I in R (re-
statement of 4

th isomorphism theorem).

8.1
Chinese Remainder Theorem
(c.r.t)

proper ideals I, J of R ring are comaximal
ideals if I+ J = R

c.r.t
let A1,A2, . . ,Ak be ideals in R then the map
R → R/A1 × R/A2 × . . × R/Ak defined by
r → (r+A1, r+A2, . . , r+Ak) is a ring ho-
momorphism with kernel A1 ∩A2 ∩ . . ∩Ak.
and if for each i, j ∈ {1, 2, . . ,k} with i ̸= j

Ai,Aj are comaximal then this map is sur-
jective and A1 ∩A2 ∩ . . ∩Ak = A1A2. .Ak.

Consequences of c.r.t

■ if n = pa1

1 pa2

2 . .pak

k ∈ Z where p ′
is are

prime in Z,ai ∈ Z+ then

Z/nZ ∼=
(Z/pa1

1 Z)× (Z/pa2

2 Z)× . . × (Z/pak

k Z).
(Z/nZ)∗ ∼=

(Z/pa1

1 Z)∗ × (Z/pa2

2 Z)∗ × . . × (Z/pak

k Z)∗.

■ Chinese Remainder problem :
if n1, . . ,nk are integers which are relatively
prime i.e. (ni,nj) = 1 for i ̸= q and
a1, . . ,ak ∈ Z then there is a solution to si-
multaneous congruences

x ≡ a1 (mod n1),
x ≡ a2 (mod n2)
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...
x ≡ ak (mod nk).

s|t x ∈ Z and is unique mod n =
n1n2. .nk the solution given by :
let n = n1n2. .nk, n ′

i = n/ni and ti be the
inverse of n ′

i (mod ni) then

x = a1t1n
′
1
+ a2t2n

′
2
+ . . + aktkn

′
k (mod n)

9 Quadratic Field and Quadratic In-
teger Ring

if D ∈ Q is such that
√
D /∈ Q i.e. D is not a

perfect square in Q then

Q[
√
D] = {a+ b

√
D|a,b ∈ Q}

forms a Field called Quadratic Field. (more
precisely a subfield of C )( (a + b

√
D)−1 =

a− b
√
D/(a2 −Db2) this is possible as a2 −Db2 ̸= 0

if any one of a,b ̸= 0 as D is not a perfect square in
Q.)

if D ∈ Q and D ′ is the square free part of D
i.e. D = kD ′ no square divides D ′ and k =
b2 for some b ∈ Q. then Q[

√
D] = Q[

√
D ′].

If D is square free in Z then

Z[
√
D] = {a+ b

√
D|a,b ∈ Z}

forms a ring called Quadratic integer ring
more precisely a subring of Q[

√
D].

if D square free in Z and D ≡ 1 (mod 4)
then

Z[
√
D] ⊂ Z[

1 +
√
D

2

] ⊂ Q[
√
D]

i.e. Z[(1 +
√
D)/2] is a slightly larger sub-

ring in Q[
√
D].

Define field norm N(a+ b
√
D) = a2 −Db2

in Z[
√
D] clearly N(αβ) = N(α)N(β) and

N(α) ∈ Z only. (Generally norm is taken to
be |a2 −Db2| but field norm maps Q[

√
D] →

Q which may be negative here it is restricted
to Z[

√
D] → Z ).

thus α = a + b
√
D is a unit in Z[

√
D] iff

N(α) = ±1 (units in Z )
iff a2 −Db2 ∈ {±1}.

for D ≡ 1 (mod 4),Z[ 1+
√
D

2
] , w = 1+

√
D

2

and w = 1−
√
D

2
define the field norm as

N(a+ bw) = (a+ bw)(a+ bw) = a2 + ab+
1−D

4
b2 same rule of units follow : a+ bw is

unit iff a2 + ab+ 1−D
4

b2 = ±1.

using the above defined field norm N(a +
b
√
D) = a2 −Db2 or the other general norm

we can use this norms property N(ab) =
N(a)N(b) to check for irreducibility, re-
ducibility and prime nature of an element
in Z[

√
D] like if N(a) = ±p for a prime p

then a is irreducible in Z[
√
D]

■ from this property we get if D is square
free and a,b ∈ Z[

√
D] are such that ab is a

unit in Z[
√
D] then both a and b are units in

Z[
√
D]

■ Z[
√
D] for D < 0 is an U.F.D iff D = −1

or −2.

Gaussian integer ring Z[
√
−1] = Z[i]. is an

U.F.D

10 Polynomial Rings
for any commutative ring R with identity
we define R[x] as the ring of polyno-
mial a set containing elements of type :
anx

n +an−1x
n−1 + . . +a1x+a0 for ai ∈ R,

n ⩾ 0 and x a variable (simply denoted) is
called the polynomial of x with coefficients

9



in R, where n is degree an if ̸= 0 is the
leading coefficient.
This set is a ring with addition defined com-
ponent wise and multiplication is done by
defining (axj)(bxi) = abxi+j distributing it
over +.
i.e. if a(x) =

∑n
i=1

aix
i and

b(x) =
∑m

j=1
bjx

j then a(x) + b(x) =∑max(m,n)
i=1

(ai + bi)x
i a(x)b(x) =∑m+n

i=1
(
∑i

j=0
aibi−j)x

i

(we can write any number of terms in a given poly-
nomial for these operations by assuming coefficients
are 0)

if R is an Integral domain then
■ degree a(x)b(x)= degree a(x) +degree
b(x)
■ the only units of R[x] are the units of R
■ R[x] is an Integral domain.
(use fact that when polynomial with non zero leading
coeffs are multiplied give a non zero leading coeff .)

p(x) is zero divisor in R[x] iff bp(x) = 0 for
some b ∈ R ( use fact that g(x)p(x) = 0 s|t g(x) has
minimal degree then the leading coeff of g(x)p(x) =

gmpn = 0 so we have png(x)p(x) is also 0 but degree
png(x) < degree g(x) thus only possibility of g(x) =
constant ∈ R is left out. )

if R is commutative p(x) = anx
n +

an−1x
n−1 + . . + a1x + a0 is an element of

R[x] then
■ p(x) is nilpotent iff an,an−1, . . ,a1,a0 are
nilpotent in R

(use induction: if n = 0 then clearly true, if n = 1 then
p(x) = a1x+ a0 then any pk(x) has leading coeff ak

1

and constant term ak
0

so p(x)m = 0 iff am
1

= 0,am
0

=

0 now for any n, p(x) = x(anx
n−1 + an−1x

n−2 +

. . + a1) + a0 = xq(x) + a0 by induction hypothe-
sis qm(x) = 0, if an

0
= 0 let k = max(n,m) now

(xq(x) + an)
2k =

∑
2k
i=0

(
2k
i

)
(xq(x))ia2k−i

0
where the

power of atleast one term ⩾ k so (xq(x) + an)
2k = 0)

■ p(x) is a unit in R[x] iff a0 is a unit in R

and an,an−1, . . ,a1 are nilpotent in R.
(for one way use p(x) = xq(x) + a0 = nilpotent + unit

= unit , for other way : if p(x) = xq(x) + a0 is a unit
then p−1(x)(xq(x) + a0) = 1 so xq(x)p−1(x) = 1 −

a0p
−1(x) equating for constant coefficient in p−1(x)

we get 1−a0b0 = 0 so a0 is unit and we can transform
p(x) to f(x) = b0p(x) = xg(x) + 1 now f−1(x) exist
and satisfies equation f−1(x) = 1 − xg(x)f−1(x) from
this equation and using recursive arguments we get
f−1(x) = 1−g(x)x+g2(x)x2 + . . +(−1)ngn(x)xn+ . .
and goes on, now as degree of f−1(x) is finite we get
gm(x) = 0 for some m ∈ Z+ thus g(x) is nilpotent
and as g(x) = b0q(x) we get q(x) is nilpotent.)

Ideals in Polynomial rings

if I is an ideal in R then
■ (I) = I[x] is an ideal in R[x] and
■ R[x]/(I) ∼= (R/I)[x].
■ if I is prime ideal in R then (I) = I[x] is
prime ideal of R[x].
■ if I is a maximal ideal in R then (I, x) i.e.
ideal generated by I, x is maximal in R[x]
( note : if I is maximal in R then I[x] may not be max-
imal in R[x]

for eg: 2Z is maximal in R but 2Z[x] is not maximal
in Z[x] as 2Z[x] ⊂ (x, 2) ⊂ Z[x])
■ in R[x]/(f(x)) if g(x) is a non-trivial fac-
tor ( ̸= 0 or f(x)) of f(x) then (g(x)) = (g(x) +
(f(x))) is a proper ideal of R[x]/(f(x)).

Characterisation of Poly rings

■ if F is a field then F[x] is a Euclidean Do-
main (with norm = degree of the polynomial.)
Hence F[x] is P.I.D. and U.F.D.
■ if R is a commutative ring with identity
then (x) is a prime ideal in R[x] iff R is inte-
gral domain and (x) is maximal ideal in R[x]
iff R is a field. (use R[x]/(x) ∼= R)
■ if R is commutative ring such that R[x] is
a P.I.D then R is a field.

Irreducibility

a polynomial f(x) is irreducible in R[x] if
whenever f(x) can be expressed as f(x) =
g(x)h(x) then either g(x) or h(x) is a unit in
R[x] ( note: we don’t say any thing about the degree
of g(x) or h(x) some times they can be equal to f(x)
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also for eg: 2x2 + 4 = 2(x2 + 2) in Z[x] this becomes
reducible but is irreducible in Q[x] )

Primitive Polynomial

a non-zero polynomial anx
n + an−1x

n−1 +
. . + a0 is called a primitive polynomial if
gcd of a ′

is are 1

■ product of two primitive polynomials is a
primitive polynomial.
■ A polynomial in Z[x] is irreducible then
it is primitive.

for f(x) ∈ F[x] a polynomial ring generated
by field F :
■ ⟨f(x)⟩ is a maximal ideal in F[x] i.e.
F[x]/(f(x)) is a field iff f(x) is irreducible in
F[x].
■ f(x) is irreducible in F then
{a+ ⟨f(x)⟩ s|t a ∈ F} is subfield in F[x]/(f(x))
that is isomorphic to F.
■ if degree f(x) = n ⩾ 1 and if bars on top
denote the passage to F[x]/(f(x)) then for
each g(x) there is a unique g0(x) ∈ F[x] with
degree < n s|t g(x) = g0(x) i.e. F[x]/(f(x))
is n dimensional vector space with basis
1, x. . xn−1 over F.
■ if F is a finite field of order q, degree
f(x) = n ⩾ 1 then F[x]/(f(x)) has qn ele-
ments.

if F is a finite field (or an infinite one ) then there
are infinitely many primes in F[x].

Gauss Lemma
Let R be a U.F.D. , F its field of fractions and
if P(x) is reducible in F[x] then P(x) is re-
ducible in R[x]

sort of converse of Gauss Lemma
Let R be a U.F.D. , F its field of fractions if
p(x) ∈ R[x] s|t and g.c.d of its coefficients is
1 i.e. p(x) is primitive polynomial then p(x)
is irreducible in R[x] iff p(x) is irreducible
in F[x], in particular if p(x) is monic poly-

nomial irreducible in R[x] then p(x) is irre-
ducible in F[x].

from above point we get : Let R be a in-
tegral domain, F its field of fractions if
p(x) ∈ R[x] is a monic polynomial reducible
in F[x] s|t p(x) = a(x)b(x) where a(x),b(x)
are monic and if a(x) /∈ R[x] then R[x] is not
a U.F.D.

R is a U.F.D. iff R[x] is a U.F.D.

if f(x) ∈ F[x] has a1,a2, . .ak as roots in F

field then f(x) has (x− a1)(x− a2). . (x− ak)
as factors, in particular a polynomial of de-
gree n over F has at most n roots in F.

every finite subgroup of multiplicative
group of a field is cyclic , in particular
F∗ = F− {0} for F field is a cyclic group (mul-
tiplicative).
(use fundamental theorem of finite abelian groups
and last point to show subgroup is ∼= Z/n1Z ×
Z/n2Z × . . Z/nkZ so has more than nk roots for
xnk − 1 if k ⩾ 2 as for each d||G| cyclic group there
are exactly d elements of order dividing d in G, so
k = 1 i.e. subgroup is ∼= Z/n1Z only.)
eg : now as Z/pZ is a field for prime p we
get (Z/pZ)∗ is cyclic group of order p − 1

(multiplicative).

Z/pαZ is cyclic group of order pα−1(p− 1)
for all odd primes p,α ⩾ 1

( use (1 + p)p
n−1 ≡ 1 (mod p)n but (1 + p)p

n−2 ̸≡ 1

(mod p)n so Sylow p subgroup is cyclic and homo-
morphism ϕ : (Z/pαZ)∗ → (Z/pZ)∗ by ϕ(a) = a

(mod p) then ϕ is serjective so any p ̸= q|p − 1 is
Sylow q subgroup is mapped isomorphically to sub-
group of (Z/pZ)∗ which is cyclic so all Sylow sub-
groups of (Z/pαZ)∗ are cyclic so by direct product
and order deduction we have (Z/pαZ)∗ is cyclic.)
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g(x) ∈ F[x] for a field F is such that g(x) =
f1(x)

n1f2(x)
n2 . . fk(x)nk be its factorization

where fi(x) are distinct primes then

F[x]/(g(x)) ∼= F[x]/(f1(x)
n1)×

F[x]/(f2(x)
n2)× . . × F[x]/(fk(x)

nk).

(use Chinese remainder theorem.)

If R is commutative, f(x) is a monic polyno-
mial of degree n ⩾ 1 and if bar denotes the
passage to quotient ring R[x]/(f(x)) then
■ every element of R[x]/(f(x)) is of form
p(x) for some polynomial p(x) ∈ R[x] of
degree less than n i.e.

R[x]/(f(x)) = {a0 + a1x+ . . +
an−1xn−1|a0,a1, . . ,an−1 ∈ R}.

■ if p(x) and q(x) are distinct polynomial of
R[x] of degree less than n then p(x) ̸= q(x)
in R[x]/(f(x)) .
■ if f(x) = a(x)b(x) for a(x) and b(x) de-
gree less than n in R[x] then a(x),b(x) are
zero divisors in R[x]/(f(x)) i.e. if non-unit
factors of f(x) (of degree less than that of f(x)) in
R[x] are zero divisors in R[x]/(f(x)).
■ if f(x) = xn − a for some nilpotent ele-
ment a ∈ R then x is nilpotent in R[x]/(f(x))
(use: xn = a in R[x]/(f(x))).
■ for a prime p if R = Fp (field with p elements)
and f(x) = xp − a for some a ∈ R then x− a

is nilpotent in R[x]/(f(x)).

10.1 Irreducibility Criterion and
properties

■ for F is a field and p(x) ∈ F[x] has a factor
of degree one iff p(x) has a root in F.
■ immediately from above point we get
polynomial of degree two or three in F[x] for
F field is reducible iff it has roots in F.

Rational root Theorem
let p(x) = anx

n + an−1x
n−1 + . . + a0 be a

polynomial with integer coefficients, if r/s ∈
Q in lowest form (i.e. (r, s) = 1 ) is a root
of p(x) then r|a0 and s|an, in particular if
p(x) is monic with integer coefficients and
p(d) ̸= 0 for all integer dividing the con-
stant term of p(x) then p(x) has no root in
Q.

if I is a prime ideal of Integral Domain R,
p(x) a non constant monic polynomial in
R[x] s|t its image in (R/I)[x] cannot be fac-
tored into two polynomials of smaller de-
gree in (R/I)[x] then p(x) is irreducible in
R[x]. From this we get :

Mod p irreducibility test

For f(x) ∈ Z[x] with deg(f(x)) ⩾ 1,
f(x) ∈ Zp[x] obtained from reducing co-
efficients of f(x) modulo p for a prime
p ∈ Z and if f(x) is irreducible in Zp[x]
and deg(f(x)) = deg(f(x)) then f(x) is ir-
reducible in Q (converse is not true : i.e. if f(x)
is reducible in Zp then it may not be reducible in
Z[x])

Eisenstein’s Criterion
for P a prime ideal of integral domain R,
f(x) = xn + an−1x

n−1 + . . + a1x + a0 ∈
R[x] s|t an−1, . .a1,a0 are elements of P and
a0 is not an element of P2 then f(x) is irre-
ducible in R[x]. For eg :
■ f(x) = xn + an−1x

n−1 + . . + a0 ∈
Z[x] s|t p|ai but if p2 ̸ |a0 then f(x) is irre-
ducible in Z[x] which makes it irreducible
in Q[x].
■ f(x) = anx

n + an−1x
n−1 + . . + a0 ∈

Z[x] s|t p|ai for 0 ⩽ i < n but if p ̸ |an,
p2 ̸ |a0 then f(x) is irreducible in Z[x] which
makes it irreducible in Q[x]. (write D = {0,an}
then the fraction ring D−1Z has pZ as prime ideal
and g(x) = f(x)/an = xn + 1

an
(an−1x

n−1 + . . + a0)

in D−1Z which satisfies original Eisenstiens crite-
rion.)
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for any field F and 0 ̸= a ∈ F then
■ af(x) is irreducible over F implies f(x) is
irreducible in F

■ f(ax) is irreducible over F implies f(x) is
irreducible in F

■ f(x+ a) is irreducible over F implies f(x)
is irreducible in F

Cyclotomic polynomial : Φp(x) = xp−1

x−1
for

a prime p is irreducible over Q ( use Φp(x+ 1)

is irreducible by Eisenstien’s criterion. )

10.2 Multivariable Polynomial
Rings

For any ring R define inductively the poly-
nomial ring in variables x1, x2, . . , xn with co-
efficients in R denoted by R[x1, x2, . . , xn] by

R[x1, x2, . . , xn] = R[x1, x2, . . , xn−1][x]

i.e. its elements are finite sum of non zero
monomial terms like
axd1

1 xd2

2 . . xdn
n for a ∈ R,d ′

is ⩾ 0.
where a monic term xd1

1 xd2

2 . . xdn
n is called

monomial
di is degree of xi, the sum d = d1 +d2 + . . +
dn is called the degree of the term and
the ordered n-tuple (d1,d2, . .dn) is called
multidegree of the term.

11
Ring of functions
and evaluation maps

If A is a ring and X a non empty subset
of A then R the set of all functions from
X → A forms a Ring with usual point wise
addition and multiplication of functions
(note multiplication is not composition of functions).
■ This ring R is commutative iff A is
commutative.
■ R has identity iff A has Identity (if so then
constant function mapping to identity is identity in R.)

familiar examples and their properties:
■ Consider the set of all functions from
R → R with compact support (i.e. f(x) ̸= 0

only in a compact set of R) then this set forms a
commutative Ring with no identity.
■ if R is ring of all functions from [0, 1] → R

then units in R are functions that are not
zero at any point, and if f ∈ R is not a unit
and not zero then it is a zero divisor as g(x)
defined by g(x) = 1 at point where f(x) = 0

and g(x) = 0 at points f(x) ̸= 0 are such that
f(x)g(x) ≡ 0.
■ Similarly if R is ring of continuous func-
tions from [0, 1] → R then units are same
as presiding point but not true for zero di-
visors, functions with countably many zeros
are neither units nor zero divisors and R also
has zero divisors (like continuous functions with
zero on a closed interval in [0, 1]. )

If R is a ring of functions from a non-empty
set X to a field F then R contains no nonzero
nilpotent elements.

Evaluation map

for X non-empty subset of ring A let R

be ring of functions from X → A for each
c ∈ X fixed the evaluation map Ec : R → A

defined by Ec(f) = f(c) is a surjective ring
homomorphism (if a ∈ A then constant function
f(x) = a is in preimage of a i.e. f ∈ E−1

c (a) )
with a kernel Mc = {f ∈ R|f(c) = 0} thus
R/kerEc

∼= A.
■ thus the set Mc = {f ∈ R|f(c) = 0, c ∈ A}

is an ideal in R.

Examples and their properties :
■ consider R ring of all functions from
[0, 1] → R then for c ∈ [0, 1] let Mc be the
kernel of evaluation at c then Mc is gener-
ated by g(x) defined by 0 at c and 1 else-
where, ( as f.g = f for all f ∈ Mc) thus Mc is
principle ideal in R. (more precisely Mc is gen-
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erated by any function with zero at c and nonzero
elsewhere.)
■ now as R/Mc

∼= R so we get Mc is a max-
imal ideal in R as R is a field. i.e. any ring of
functions to a field has kernel of evaluations
as maximal ideals (thus prime ideals also ).
■ if R ′ is ring of continuous functions from
[0, 1] → R then

■ M is any maximal ideal in R ′ then
M = Mc for some c ∈ [0, 1] i.e. M is
maximal ideal in R ′ iff M = Mc.
■ if a ̸= b in [0, 1] then Ma ̸= Mb in R ′

■ Mc is not principle and not even
finitely generated.
(note: compactness of [0, 1] plays a major role in
proofs of preceding points, if this is taken out then
we get the following exception)

■ Consider R" ring of continuous functions
from R → R here

■ I a collection of continuous functions
with compact support forms an Ideal that
is not prime in R".
■ if M is a maximal ideal of R" containing
I then M ̸= Mc for any c ∈ R.

■ now if Ia,b is a subset of R ′ ring of con-
tinuous functions from [0, 1] → R with such
that I = {f ∈ R|f(a) = f(b) = 0 for some
a,b ∈ [0, 1] and a ̸= b} then I is not a prime
ideal.

12 Matrix Rings

for any non trivial ( ̸= {0}) ring R let Mn(R) =
[aij] be set of all n×n matrices with entries
aij from R with component wise addition
and matrix multiplication this Mn(R) forms
ring with properties as follows :
■ Mn(R)a non commutative ring whenever
R ̸= {0} and n ⩾ 2

■ Mn(R) contains a zero divisor whenever
n ⩾ 2

■ The set of scalar matrices (aii = a∀i aij = 0

if i ̸= j. ) in Mn(R) forms a subring isomor-
phic to R.
■ center of Mn(R) is the set of scalar matri-
ces.
■ if S is a subring of R then Mn(S) is sub-
ring of Mn(R)

if Mn(R) for n ⩾ 2 is a matrix ring of R

a commutative ring with identity then con-
sider the set Cj (j ∈ {1, 2, . . ,n}) of matrices with
arbitrary entries in jth column and 0 in all
other columns then
■ Cj is a group under matrix addition
■ Cj is closed only under left multiplication.
■ And TCj = Cj for any T ∈ Mn(R) thus Cj

is left ideal that is not a right ideal in Mn(R)
Similarly one can construct Rj with 0 entries
in rows except jth one, then Rj is a right
ideal that is not a left ideal in R.

All rings with unity of order p

and p2 are commutative the ring{[
a b

0 c

]
s|t a,b, c ∈ Fp field of order p

}
is

a non-commutative ring with unity of order
p3
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13 Group Rings
for a commutative ring R with identity 1 ̸= 0

and G = {g1,g2, . . ,gn} be a finite group
with group operations written multiplica-
tively then
RG a group ring is defined to be set of for-
mal sums a1g1 +a2g2 + . . +angn for ai ∈ R

if g1 is identity then a1g1 is simply written
as a1

with addition defined component wise and
multiplication defined by (agj)(bgi) =
abgk for gigj = gk in G and obeying dis-
tribution w.r.t. + i.e. if α =

∑n
i=1

aigi,β =∑n
j=1

bjgj then α + β =
∑n

i=1
(ai + bi)gi.

and
αβ =

∑n
k=i(

∑
gjgi=gk

aiaj)gk. then these
operations make RG a ring with following
properties

G ⊂ RG is subgroup of units of RG ( note
1g1 = g1 ∈ RG)

if |G| > 1 then RG has a zero divisor ( if gm =

1 in G then (1 − g)(1 + g+ . . + gm−1) = 1 − gm = 0)

if S is a subring of R then SG is subring of
RG.

If K = {k1,k2, . . ,kn} is one of the conjugacy
classes of group G then
K = k1 + k2 + . . + kn is in center of RG
(as g−1Kg = K ∀g ∈ G =⇒ agK = Kag)
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